BestCoder Round #90 A+B题解!

                         BestCoder Round #90



   A  Kblack loves flag


       题意有点迷不造思路很简单但不造怎么求随机数,纠结了一会后直接粘上题目所给的代码稍加修改A了。

const int _K=50268147,_B=6082187,_P=100000007;
int _X;
inline int get_rand(int _l,int _r){
    _X=((long long)_K*_X+_B)%_P;
    return _X%(_r-_l+1)+_l;
}
int n,m,k,seed,xx,yy;
int x[1000006],y[1000006],vx[N],vy[N];
void Init(){
    memset(vx,0,sizeof(vx));
    memset(vy,0,sizeof(vy));
    scanf("%d%d%d%d",&n,&m,&k,&seed);
    _X=seed;
    xx=n,yy=m;
    for (int i=1;i<=k;++i)
    {
        x[i]=get_rand(1,n);
        y[i]=get_rand(1,m);
        if(!vx[x[i]])
        {
            vx[x[i]]=1;
            xx--;
        }
        if(!vy[y[i]])
        {
            vy[y[i]]=1;
            yy--;
        }
    }
    printf("%d %d\n",xx,yy);

}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
      Init();
    }
    return 0;
}

  B dingyeye loves stone

    题意:一颗根节点为0的有根树,每个节点上有一定的石子数,每次可以选一个节点上一定数量(不能为0)的石子转移到他的父亲节点上,最后不能移的算输。

   思路:设根节点的深度为00,将所有深度为奇数的节点的石子数目xor起来,则先手必胜当且仅当这个xor和不为00。 证明同阶梯博弈。对于偶深度的点上的石子,若对手移动它们,则可模仿操作;对于奇深度上的石子,移动一次即进入偶深度的点。 时空复杂度O(n)O(n)

说实话差一点接近了正确答案了,已经推出来和深度有关,但深搜结果方向错了,围绕nim博弈转化即可。

const int N=1e6+7;
int a[N],f[N],v[N];
int main()
{
    int t,n;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        memset(v,0,sizeof(v));
        int ans=0;
        for(int i=1; i<=n-1; i++)
        {
            scanf("%d",&f[i]);
            if(!v[f[i]]) v[i]=1;//深度为奇数的节点标记起来;
        }
        for(int i=0; i<=n-1; i++)
        {
            scanf("%d",&a[i]);
//            printf("%d %d\n",i,v[i]);
            if(i&&v[i]) ans^=a[i];
        }
        if(ans) printf("win\n");
        else printf("lose\n");
    }
    return 0;
}

   暂时先pou上这两题,以后再补!这场只A了一题居然涨分了,手残hack unsuccessful一发。。

转载于:https://www.cnblogs.com/nyist-TC-LYQ/p/7208145.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值