Design and Analysis of Algorithms_Decrease-and-Conquer

I collect and make up this pseudocode from the book:
 <<Introduction to the Design and Analysis of Algorithms_Second Edition>> _ Anany Levitin
Note that throughout the paper, we assume that inputs to algorithms fall within their specified ranges and hence require no verfication. When implementing algorithms as programs to be used in actual applications, you should provide such verfications.
About pseudocode: For the sake of simplicity, we omit declarations of variables and use indentation to show the scope of such statements as for, if and while. As you saw later, we use an arrow <- for the assignment operation and two slashes // for comments.

Algorithm InsertionSort(A[0..n-1])
    // Sorts a given array by insertion sort
    // Input: An array A[0..n-1] of n orderable elements
    // Output: Array A[0..n-1] sorted in nondecreasing order
    for i <- 1 to n-1 do
        v <- A[i]
        j <- i-1
        while j ≥ 0 and A[j] > v do
            A[j+1] <- A[j]
            j <- j-1
        A[j+1] <- v
        
Consider the following version of insertion sort
Algorithm InsertionSort2(A[0..n-1])
    for i <- 1 to n-1 do
        j <- j-1
        while j ≥ 0 and A[j] > A[j+1] do
            swap(A[j], A[j+1])
            j <- j-1
What is its time efficiency? How is it compared to that of the version given in the above?
The efficiency classes of both versions will be the same. The Inner loop of InsertionSort consists of one key assignment and one index decrement; the inner loop of InsertionSort2 consists of one key swap(i.e., three key assignments) and one index decrement. If we disregard the time spend on the index decrements, the ratio of the running times should be estimated as 3Ca/Ca = 3; if we take into account the time spent on the index decrements, the ratio's estimate becones (3Ca+Cd)/(Ca+Cd), where Ca and Cd are the times of one key assignment and one index decrement, respectively.
Algorithm DFS(G)
    // Implements a depth-first search traversal of a given graph
    // Input: Graph G = <V, E>
    // Output: Graph G with its vertices marked with consecutive integers
    //            in the order they've been first encountered by the DFS traversal
    make each vertex in V with 0 as a mark of being "unvisited"
    count <- 0
    for each vertex v in V do
        if v is marked with 0
            dfs(v)
    
    dfs(v)
        // visits recursively all the unvisited vertices connected to vertex v by a path
        // and numbers them in order they are encountered via global variable count
        count <- count+1; mark v with count
        for each vertex w in V adjacent to v do
            if w is marked with 0
                dfs(w)
Algorithm BFS(G)
    // Implements a breadth-first search traversal of a given graph
    // Input: Graph G = <V, E>
    // Output: Graph G with its vertices marked with consecutive integers 
    //             in the order they have been visited by the BFS traversal
    mark each vetex in V with 0 as a mark of being "unvisited"
    count <- 0
    for each vertex v in V do
        if v is marked with 0
            bfs(v)
    
    bfs(v)
        // visits all the unvisited vertices connected to vertex v by a path and assigns them
        // the numbers in the order they are visited via global variable count
        count <- count+1; mark v with count and initialize a queue with v by a path
        while the queue is not empty do
            for each vertex w in V adjacent to the front vertex do
                if w is marked with 0
                    count <- count+1; mark w with count
                    add w to the queue
            remove the front vertex from the queue
Algorithm JohnsonTrotter(n)
    // Implements Johnson-Trotter algorithm for generating permutations
    // Input: A positive integer n
    // Output: A list of all permutations of {1, ..., n}
    initialize the first permutation with 1 2... n 
    while the last permutation has a mobile element do
        find its largest mobile element k 
        swap k and the adjacent integer k's arrow points to      
        reverse the direction of all the elements that are larger than k
        add the new permutation to the list

Here is an application of this algorithm for n = 3, with the largest mobile integer shown in underline:
123  132  312  321  231  213
Consider the following implementation of the algorithm for generating permutations discovered by B.Heap.
Algorithm HeapPermute(n)
    // Implements Heap's algorithm for generating permutations
    // Input: A positive integer n and a global array A[1..n]
    // Output: All permutations of elements of A
    if n = 1
        write A
    else
        for i <- 1 to n do
            HeapPermute(n-1)
            if n is odd
                swap A[1] and A[n]
            else
                swap A[i] and A[n]
                
Trace the algorithm by hand for n = 2, 3, and 4.
For n = 2:
    12 21
For n = 3 (read along the rows):
    123 213
    312 132
    231 321
For n = 4 (read along the rows):
    1234 2134 3124 1324 2314 3214
    4231 2431 3421 4321 2341 3241
    4132 1432 3412 4312 1342 3142
    4123 1423 2413 4213 1243 2143
Write a pseudocode for a recursive algorithm for generating all 2^n bit strings of length n.
Algorithm BitstringsRec(n)
    // Generates recursively all the bit strings of a given lengt
    // Input: A positive integer n
    // Output: All bit strings of length n as contents of global array B[0..n-1]
    if n = 0
        print(B)
    else
        B[n-1] <- 0; BitstringsRec(n-1)
        B[n-1] <- 1; BitstirngsRec(n-1)

Write a nonrecursive algorithm for generating all 2^n bit strigns of length n that implements bit strigns as arrays and does not use binary additions.
Algorithm BitstringsNonrec(n)
    // Generates nonrecursively all the bit strings of a given length
    // Input: A positive integer n
    // Output: All bit strings of length n as contents of global array B[0..n-1]
    for i <- 0 to n-1 do
        B[i] = 0
    repeat
        print(B)
        k <- n-1
        while k ≥ 0 and B[k] = 1
            k <- k-1
        if k ≥ 0
            B[k] <- 1
            for i <- k+1 to n-1 do
                B[i] <- 0
    until k = -1    
     
Design a decrease-and-conquer algorithm for generating all combinations for k items chosen form n, i.e., all k-element subsets of a given n-element set. 
There are several decrease-and-conquer algorithms for this problem. They are more subtle than one might expect. Generating combinations in a predefined order(increasing, decreasing, lexicographic) helps with both a design and a correctness proof. The following simple property is very helpful. Assuming with no loss of generality that the underlying set is {1, 2, ..., n}, there are (n-1k-1) k-subsets whose smallest elements is i, i = 1, 2, ..., n-k+1.
Here is a recursive algorithm from "Problems on Algorithms" by Ian Par-berry. call Choose(1, k) where
Algorithm Choose(i, k)
    // Generates all k-subsets of {i, i+1, ..., n} stored in global array A[1..k]
    //         in descending order of their components
    if k = 0
        print(A)
    else
        for j <- i to n-k+1 do
            A[k] <- j
            Choose(j+1, k-1)
Write a pseudocode for the divide-into-three algorithm for the fake-coin problem.(Make sure that your algorithm handles properly all values of n, not only those that are multiples of 3; We assume that the fake coin is lighter)
If n is multiply of 3(i.e., n mod 3 = 0), we can divide the coins into three piles of n/3 coins each and weigh two of the piles. If n = 3k+1(i.e., n mod 3 = 1), we can divide the coins into the piles of sizes k, k and k+1, or k+1, k+1 and k-1.(We will use the second option.) Finally, if n = 3k+2(i.e., n mod 3 = 2), we will divide the coins into the piles of sizes k+1, k+1 and k. The following pseudocode assumes that there is exactly one fake coin among the coins given and that the fake coin is lighter than the other coins.
    if n = 1 the coin is fake
    else divide the coins into three piles of ...coins ; mark
        weigh the first two piles
        if they weight the same and continue with the coins of the third pile
        else continue with the lighter of the first two piles

There has a very natural question. For large values of n, about how many times faster is this algorithm than the one based on dividing coins into two piles?
The ratio of the number of weighings in the worst case can be approximated for large values of n by
log2n/log3n = log2n/(log32log2n) = log23 ≈ 1.6.

Write a pseudocode for the multiplication à la russe algorithm.
Algorithm Russe(n, m)
    // Implements multiplication à la russe nonrecursively
    // Input: Two positive integer n and m
    // Output: The product of n and m
    p <- 0
    while n ≠ 1 do
        if n mod 2 = 1 p <- p+m
        n <- ⌊n/2⌋n/2
        m <- 2*m
    return p+m

Algorithm RusseRec(n, m)
    // Implements multiplication à la russe recursively
    // Input: Two positive integer n and m
    // Output: The product of n and m
    if n mod 2 = 0 return RusseRec(n/2, 2m)
    else if n = 1 return m
    else return RusseRec((n-1)/2, 2m) + m
Write a pseudocode for a nonrecursive implementation of the partition-based algorithm for the selection problem.
Algorithm Selection(A[0..n-1], k)
    // Solves the selection problem by partition-based algortihm
    // Input: An array A[0..n-1] of orderable elements and integer k(1 ≤ k ≤ n)
    // Output: The value of the k-th smallest element in A[0..n-1]
    l <- 0; r <- n-1
    A[n] <- ∞ // append sentinel
    while l ≤ r do
        p <- A[l] // the pivot
        i <- l; j <- r+1
        repeat 
            repeat i <- i+1 until A[i] ≥ p
            repeat j <- j-1 until A[j] ≤ p do
            swap(A[i], A[j])
        until i ≥ j
        swap(A[i], A[j]) undo last swap
        swap(A[l], A[j]) partition
        if j > k-1 r <- j-1
        else if j < k-1 l <- j+1
        else return A[k-1]

Write a pseudocode for a recursive implementation of the algorithm.
call SelectionRec(A[0..n-1], k) where
Algorithm SelectionRec(A[l..r], k)
    // Solves the selection problem by recursive partition-based algorithm
    // Input: A subarray A[l..r] of orderable elements and integer k(1 ≤ k ≤ r-l+1)
    // Output: The value of the k-th smallest element in A[l..r]
    s <- Partition(A[l..r]) 
    if s > l+k-1 SelectionRec(A[l..s-1], k)
    else if s < l+k-1 SelectionRec(A[s+1..r], k-1-s)
    else return A[s]

The following algorithm for to compute the partition position:
Algorithm Partition(A[l..r])
    // Partitions a subarray by using its first element as a pivot
    // Input: A subarray A[l..r] of A[0..n-1], defined by its left and right indices l and r(l < r)
    // Output: A partition of A[l..r], with the split position returned as this function's value
    p <- A[l]
    i <- l; j <- r+1
    repeat 
        repeat i <- i+1 until A[i] ≥ p
        repeat j <- j-1 until A[j] ≤ p
        swap(A[i], A[j])
    until i ≥ j
    swap(A[i], A[j]) // undo last swap when i ≥ j
    swap(A[l], A[j])
    return j  
new words: disregard: 忽视 estimate: 估计 adjacent: 邻接的
permutation: 排列 lexicographic: 字典序 fake: 假货
multiple: 倍数 product: 产品;[数]乘积


(END_XPJIANG.)

转载于:https://www.cnblogs.com/xpjiang/p/4544224.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
信息数据从传统到当代,是一直在变革当中,突如其来的互联网让传统的信息管理看到了革命性的曙光,因为传统信息管理从时效性,还是安全性,还是可操作性等各个方面来讲,遇到了互联网时代才发现能补上自古以来的短板,有效的提升管理的效率和业务水平。传统的管理模式,时间越久管理的内容越多,也需要更多的人来对数据进行整理,并且数据的汇总查询方面效率也是极其的低下,并且数据安全方面永远不会保证安全性能。结合数据内容管理的种种缺点,在互联网时代都可以得到有效的补充。结合先进的互联网技术,开发符合需求的软件,让数据内容管理不管是从录入的及时性,查看的及时性还是汇总分析的及时性,都能让正确率达到最高,管理更加的科学和便捷。本次开发的高校科研信息管理系统实现了操作日志管理、字典管理、反馈管理、公告管理、科研成果管理、科研项目管理、通知管理、学术活动管理、学院部门管理、科研人员管理、管理员管理等功能。系统用到了关系型数据库中王者MySql作为系统的数据库,有效的对数据进行安全的存储,有效的备份,对数据可靠性方面得到了保证。并且程序也具备程序需求的所有功能,使得操作性还是安全性都大大提高,让高校科研信息管理系统更能从理念走到现实,确确实实的让人们提升信息处理效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值