杜教筛

暑期的学习开始了,今天先来讲一下杜教筛吧(反演的坑以后再填。。。

核心公式:

我们设\(\begin{aligned}S(n)=\sum_{i=1}^{n}(f * g)_ {(i)}\end{aligned}\),且\(g\)为一个完全积性函数。

那么可以得到:

\(\begin{aligned}\sum_{i=1}^n((f* 1)_ {(i)}\times g)=\sum_{i=1}^ng(i)\times S(\lfloor\frac n i\rfloor)\end{aligned}\)

证明:

\(\begin{aligned}\sum_{i=1}^n((f* 1)_ {i}\times g)&=\sum_{i=1}^ng(i)\times\sum_{d|i}f(d)\\&=\sum_{d=1}^n\sum_{i=1}^{\lfloor\frac n d\rfloor}g(id)\times f(d)\\&=\sum_{d=1}^ng(i)\times g(d)\times f(d)\\&=\sum_{d=1}^ng(d)\times S(\lfloor\frac n d\rfloor)\end{aligned}\)

证毕

具体实现:

  • \(\mu\)函数求前缀和:

    根据\(\mu* 1=\epsilon\),将\(\epsilon\)作为\(S\)\(\mu\)作为\(f\)\(1\)作为\(g\)代入上述公式,得到:\(\begin{aligned}\sum_{i=1}^n\epsilon(i)=\sum_{d=1}^n1(d)\times S(\lfloor\frac n d\rfloor)\end{aligned}\)

    \(d=1\)拿出来,再化简得:\(\begin{aligned}1=S(n)+\sum_{d=2}^nS(\lfloor\frac n d\rfloor)\end{aligned}\)

    移个项,得:\(\begin{aligned}S(n)=1-\sum_{d=2}^nS(\lfloor\frac n d\rfloor)\end{aligned}\)

  • \(\varphi\)函数求前缀和:

    根据\(\varphi* 1=id\)得到:

    \(\begin{aligned}S(n)=\frac{n\times(n+1)}{2}+\sum_{d=2}^nS(\lfloor\frac n d\rfloor)\end{aligned}\)

转载于:https://www.cnblogs.com/WR-Eternity/p/11153806.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值