时间限制: 1 s
空间限制: 32000 KB
题目等级 : 黄金 Gold
题目描述
Description
现在,黎恒健与YJY由于身处异地,非常迫切地想在最短的时间内相遇,然后干一架。但是由于双方都在努力地编程序想干掉对方,所以他们希望你来帮他们找到一个最好的方案使得相遇的时间最短。
在此我们定义"相遇"为:两个人皆在同一个有编号的星球上就可以了,并且这两个人均可以站在原地等另外一个人。也就是说,在这里我们不考虑两人在宇宙中间相遇。
输入描述
Input Description
输入数据第一行:N和M(用空格隔开) 表示这是一个N个点的图并且有M条边
第二行到第M+1行 为这个图的详细信息。
每行共有被空格隔开的三个数:a b c。表示编号为a的星球到编号为b的星球
有一个双向边,并且要过这条双向边所需要花费的时间为c。
最后一行有两个数:Y和T,Y表示黎恒健所在星球(也就是月球),T表示YJY所处的
星球(也就是天狼星)
输出描述
Output Description
输出只有一行,D,表示二者"相遇"的最短时间。当然,如果无法相遇则输出"They are all died!"
样例输入
Sample Input
3 3
1 2 1
2 3 1
1 3 1
1 3
样例输出
Sample Output
1
数据范围及提示
Data Size & Hint
[数据范围]每组都是n=5000 m=5000 并且保证运算过程中的所有值都不会超过117901063
以黎恒健为原点做 dijkstra
以YJY为原点做 djikstra
答案=min(max(dis1[i],dis2[i]));
#include <cstring> #include <cstdio> #include <queue> #define N 5005 using namespace std; bool vis[N]; int n,m,S,T,cnt,ans=0x7fffffff,far[2][N],to[N<<1],val[N],head[N],nextt[N<<1]; struct node { int x,y; bool operator<(node a)const { return y>a.y; } }; priority_queue<node>q; void dijkstra(int s,int *dis) { memset(vis,0,sizeof(vis)); for(int i=1;i<=n;++i) dis[i]=0x7fffffff; dis[s]=0; q.push((node){s,dis[s]}); for(node now;!q.empty();) { now=q.top();q.pop(); if(vis[now.x]) continue; vis[now.x]=true; for(int i=head[now.x];i;i=nextt[i]) { int v=to[i]; if(dis[v]>dis[now.x]+val[i]) { dis[v]=dis[now.x]+val[i]; if(!vis[v]) q.push((node){v,dis[v]}); } } } } inline int min(int a,int b) {return a>b?b:a;} inline int max(int a,int b) {return a>b?a:b;} inline void ins(int u,int v,int w) { nextt[++cnt]=head[u];to[cnt]=v;val[cnt]=w;head[u]=cnt; nextt[++cnt]=head[v];to[cnt]=u;val[cnt]=w;head[v]=cnt; } int main(int argc,char *argv[]) { scanf("%d%d",&n,&m); for(int a,b,c;m--;) { scanf("%d%d%d",&a,&b,&c); ins(a,b,c); } scanf("%d%d",&S,&T); dijkstra(S,far[0]); dijkstra(T,far[1]); for(int i=1;i<=n;++i) ans=min(ans,max(far[0][i],far[1][i])); ans!=0x7fffffff?printf("%d\n",ans):printf("They are all died!"); return 0; }