九度OJ 1250:矩阵变换 (矩阵运算)

时间限制:1 秒

内存限制:32 兆

特殊判题:否

提交:95

解决:47

题目描述:

对于一个整数矩阵,存在一种运算,对矩阵中任意元素加一时,需要其相邻(上下左右)某一个元素也加一,
现给出一正数矩阵,判断其是否能够由一个全零矩阵经过上述运算得到。

输入:

输出:

如果可以变换得到输出"Yes",否则"No"。
存在多组数据,每组数据第一行一个正整数n(n<=10),表示一个n*n的矩阵,然后紧跟n行,每行n个整数。当n为0时,测试结束。

样例输入:
3
1 10 9
1 1 2
1 0 1
3
0 1 0
0 1 2
1 0 1
0
样例输出:
Yes
No

思路:

设矩阵是A[n][n].
(1)X=sum(A[i][j]其中i+j是奇数,Y=sum(A[i][j])其中i+j是偶数,则有X=Y
(2)任意一个元素不大于周围四个元素的和
以上两点是充要条件.


代码:

#include <stdio.h>
#include <string.h>
 
#define N 10
 
int main(void)
{
    int n, i, j, flag;
    int a[N+2][N+2];
    int odd, even;
 
    while (scanf("%d", &n) != EOF && n)
    {
        memset(a, 0, sizeof(a));
        odd = even = 0;
        for(i=1; i<=n; i++)
        {
            for(j=1; j<=n; j++)
            {
                scanf("%d", &a[i][j]);
                if ((i+j) % 2 == 0)
                    even += a[i][j];
                else
                    odd += a[i][j];
            }
        }
 
        if (odd != even)
        {
            printf("No\n");
            continue;
        }
 
        flag = 1;
        for(i=1; i<=n; i++)
        {
            for(j=1; j<=n; j++)
            {
                if (a[i][j] > a[i-1][j] + a[i+1][j] + a[i][j-1] + a[i][j+1])
                {
                    //printf("i=%d, j=%d\n", i, j);
                    flag = 0;
                    break;
                }
            }
            if (flag == 0)
                break;
        }
        if (flag == 1)
            printf("Yes\n");
        else
            printf("No\n");
    }
 
    return 0;
}
/**************************************************************
    Problem: 1250
    User: liangrx06
    Language: C
    Result: Accepted
    Time:0 ms
    Memory:912 kb
****************************************************************/


转载于:https://www.cnblogs.com/liangrx06/p/5083814.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值