2008年高考数学江西卷压轴题

本文介绍了2008年江西高考数学理科压轴题,涉及函数单调性证明和不等式证明。通过变量替换和不等式技巧,展示了解题过程,证明了在一定条件下函数值域在1到2之间。同时,对比了此题与2004年西部奥林匹克数学题的相似性和难度,并提及了其他相关数学竞赛题目。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文为整理,非原创,解法均收集自网络.来自兰琦博客

(2008年·江西·理)已知函数\(f(x)=\dfrac{1}{\sqrt{1+x}}+\dfrac{1}{\sqrt{1+a}}+\sqrt{\dfrac{ax}{ax+8}}\).

(1)当\(a=8\),求\(f(x)\)的单调区间;

(2)对任意正数\(a\),证明:\(1<f(x)<2\).


令\(b=x\),\(c=\dfrac{8}{ax}\),则第(2)问等价于:

若\(a,b,c>0\),\(abc=8\),求证:\[1<\dfrac{1}{\sqrt{1+a}}+\dfrac{1}{\sqrt{1+b}}+\dfrac{1}{\sqrt{1+c}}<2.\]

该不等式与2004年西部奥林匹克最后一题:

设\(a,b,c>0\),求证:\[1<\dfrac{a}{\sqrt{a^2+b^2}}+\dfrac{b}{\sqrt{b^2+c^2}}+\dfrac{c}{\sqrt{c^2+a^2}}\leqslant \dfrac{3\sqrt 2}{2}.\]类似,且证明比这道西部奥林匹克题还难.而这道西部奥林匹克题当年参赛选手无一人完全证出.

另外,CMO2003第三题:

给定正整数\(n\),求最小的正数\(\lambda\),使得对于任何\(\theta_i\in\left(0,\dfrac{\pi}{2}\right)\)(\(i=1,2,\cdots,n\)),只要\(\tan\theta_1\cdot\tan\theta_2\cdots\tan\theta_n=2^{\frac n2}\),就有\(\cos\theta_1+\cos\theta_2+\cdots+\cos\theta_n\)不大于\(\lambda\).

答案是:当\(n\geqslant 3\)时,\(\lambda=n-1\);当\(n=3\)时,令\[a=\tan^2\theta_1,b=\tan^2\theta_2,c=\tan^2\theta_3,\]即得江西压轴题右边的不等式.


命题人陶平生教授的证明:

对任意给定的\(a>0\)࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值