matlab查准率代码,查准率-查全率precision recall(PR)曲线Matlab实现

该博客介绍了如何在Matlab中计算并绘制查准率(precision)和查全率(recall)曲线,特别是针对哈希检索的情况。通过提供的`recall_precision`和`evaluation`函数,计算不同汉明距离下的precision和recall,用于评估检索系统的性能。代码中包含了数据预处理、汉明距离计算以及绘制PR曲线的步骤。
摘要由CSDN通过智能技术生成

在用哈希进行检索时,常会用到precision recall曲线对其性能进行定量评价。precision recall的定义在信息检索评价指标中已做了详细说明,这里再记录一下precision recall的具体实现。

precision recall曲线matlab一般使用的都是下面的版本:

function [recall, precision, rate] = recall_precision(Wtrue, Dhat)

%

% Input:

% Wtrue = true neighbors [Ntest * Ndataset], can be a full matrix NxN

% Dhat = estimated distances

%

% Output:

%

% exp. # of good pairs inside hamming ball of radius <= (n-1)

% precision(n) = --------------------------------------------------------------

% exp. # of total pairs inside hamming ball of radius <= (n-1)

%

% exp. # of good pairs inside hamming ball of radius <= (n-1)

% recall(n) = --------------------------------------------------------------

% exp. # of total good pairs

max_hamm = max(Dhat(:))

hamm_thresh = min(3,max_hamm);

[Ntest, Ntrain] = size(Wtrue);

total_good_pairs = sum(Wtrue(:));

% find pairs with similar codes

precision = zeros(max_hamm,1);

recall = zeros(max_hamm,1);

rate = zeros(max_hamm,1);

for n = 1:length(precision)

j = (Dhat<=((n-1)+0.00001));

%exp. # of good

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值