【集训笔记】【大数模板】特殊的数 【Catalan数】【HDOJ1133【HDOJ1134【HDOJ1130

http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3324

 

 

http://blog.csdn.net/xymscau/article/details/6776182

 

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<string>
 4 #include<queue>
 5 #include<iostream>
 6 #include<algorithm>
 7 using namespace std;
 8 const int INF=1000100000;
 9 struct node{
10     int x,y;
11 }n[1010];
12 bool cmp(node a,node b){
13     return a.x<b.x;
14 }
15 int main(){
16     int p,r,xmax,xmin,ymax,ymin,y[1010];
17     while(scanf("%d%d",&p,&r)!=EOF){
18         ymax=xmax=-INF;ymin=xmin=INF;
19         for(int i=0;i<p;i++){
20             scanf("%d%d",&n[i].x,&n[i].y);
21             if(ymax<n[i].y)ymax=n[i].y;
22             if(ymin>n[i].y)ymin=n[i].y;
23             if(xmax<n[i].x)xmax=n[i].x;
24             if(xmin>n[i].x)xmin=n[i].x;
25         }
26         if((ymax-ymin <= r)&&(xmax-xmin <= r)){
27             printf("%d\n",p);
28             continue;
29         }
30         else{
31             sort(n,n+p,cmp);
32             int ans=0;
33             for(int i=0;i<p;i++){
34                 int k=0;
35                 for(int j=i;n[j].x <= n[i].x + r && j < p;j++)
36                     y[k++]=n[j].y;
37                 sort(y,y+k);
38                 int count=0,tem=0;
39                 for(int j=0;j < k && tem < k;j++){
40                     while(y[tem]-y[j] <= r && tem<k)
41                         tem++;
42                     if(count < tem-j)
43                         count=tem-j;
44                 }
45                 if(ans < count)
46                     ans=count;
47             }
48             printf("%d\n",ans);
49         }
50     }
51     return 0;
52 }
View Code

 http://blog.csdn.net/jxy859/article/details/6746254

http://blog.csdn.net/wwwzys/article/details/6746829

http://www.cnblogs.com/kuangbin/archive/2011/09/03/2165771.html

 

http://acm.hdu.edu.cn/showproblem.php?pid=1134

http://acm.hdu.edu.cn/showproblem.php?pid=1130

HDOJ 1133

是道经典的50元100元排队求组合的问题

一种看不太懂的方法:

 1 //F(a,b)=F(a-1,b)+F(a,b-1)
 2 #include<stdio.h>
 3 #include<string.h>
 4 int a[101][101][101]={0};
 5 int b[101][101]={0}; //b数组里面保存的是a数组里面的元素个数
 6 void qiuhe(int x0,int y0,int x1,int y1,int n)//大数相加这种方法可以先学习下,否则看起来比较吃力
 7 {
 8     int i,j,k=0;
 9     j=b[x0][y0];
10     if(j<b[x1][y1])
11         j=b[x1][y1];
12     for(i=0;i<j;i++){
13        a[x0][y0][i]+=a[x1][y1][i]*n+k;
14        k=a[x0][y0][i]/10000;//每个元素四位
15        a[x0][y0][i]%=10000;
16     }
17     if(k){
18         a[x0][y0][j]=k;
19         b[x0][y0]=j+1;
20     }
21     else
22         b[x0][y0]=j;
23 }
24 void jiecheng(int n)//求大数阶乘
25 {
26    int i,j,k=0;
27    for(i=0;i<b[n-1][0];i++){
28        a[n][0][i]=1;
29        a[n][0][i]=a[n-1][0][i]*n+k;
30        k=a[n][0][i]/10000;
31        a[n][0][i]=a[n][0][i]%10000;
32    }
33    if(k){
34        a[n][0][i]=k;
35        b[n][0]=i+1;
36    }
37    else
38        b[n][0]=b[n-1][0];
39 }
40 int main(){
41     int T=0,i,j,m,n;
42     a[1][0][0]=1;b[1][0]=1;
43     for(i=2;i<=100;i++)
44         jiecheng(i);//当m=0时的排列数
45     for(i=1;i<=100;i++)
46         for(j=i;j<=100;j++){
47             qiuhe(j,i,j-1,i,j);
48             qiuhe(j,i,j,i-1,i);
49         }
50    while(scanf("%d%d",&m,&n)!=EOF&&(m||n)){
51       T++;
52       printf("Test #%d:\n",T);
53       printf("%d",a[m][n][b[m][n]-1]);
54       for(i=b[m][n]-2;i>=0;i--)
55           printf("%4.4d",a[m][n][i]);
56       printf("\n");
57     }
58     return 0;
59 }
View Code

利用大数模板AC:

  1 #include<iostream> 
  2 #include<string> 
  3 #include<iomanip> 
  4 #include<algorithm> 
  5 using namespace std; 
  6 
  7 #define MAXN 9999
  8 #define MAXSIZE 10
  9 #define DLEN 4
 10 
 11 class BigNum
 12 { 
 13 private: 
 14     int a[500];    //可以控制大数的位数 
 15     int len;       //大数长度
 16 public: 
 17     BigNum(){ len = 1;memset(a,0,sizeof(a)); }   //构造函数
 18     BigNum(const int);       //将一个int类型的变量转化为大数
 19     BigNum(const char*);     //将一个字符串类型的变量转化为大数
 20     BigNum(const BigNum &);  //拷贝构造函数
 21     BigNum &operator=(const BigNum &);   //重载赋值运算符,大数之间进行赋值运算
 22 
 23     friend istream& operator>>(istream&,  BigNum&);   //重载输入运算符
 24     friend ostream& operator<<(ostream&,  BigNum&);   //重载输出运算符
 25 
 26     BigNum operator+(const BigNum &) const;   //重载加法运算符,两个大数之间的相加运算 
 27     BigNum operator-(const BigNum &) const;   //重载减法运算符,两个大数之间的相减运算 
 28     BigNum operator*(const BigNum &) const;   //重载乘法运算符,两个大数之间的相乘运算 
 29     BigNum operator/(const int   &) const;    //重载除法运算符,大数对一个整数进行相除运算
 30 
 31     BigNum operator^(const int  &) const;    //大数的n次方运算
 32     int    operator%(const int  &) const;    //大数对一个int类型的变量进行取模运算    
 33     bool   operator>(const BigNum & T)const;   //大数和另一个大数的大小比较
 34     bool   operator>(const int & t)const;      //大数和一个int类型的变量的大小比较
 35 
 36     void print();       //输出大数
 37 }; 
 38 BigNum::BigNum(const int b)     //将一个int类型的变量转化为大数
 39 { 
 40     int c,d = b;
 41     len = 0;
 42     memset(a,0,sizeof(a));
 43     while(d > MAXN)
 44     {
 45         c = d - (d / (MAXN + 1)) * (MAXN + 1); 
 46         d = d / (MAXN + 1);
 47         a[len++] = c;
 48     }
 49     a[len++] = d;
 50 }
 51 BigNum::BigNum(const char*s)     //将一个字符串类型的变量转化为大数
 52 {
 53     int t,k,index,l,i;
 54     memset(a,0,sizeof(a));
 55     l=strlen(s);   
 56     len=l/DLEN;
 57     if(l%DLEN)
 58         len++;
 59     index=0;
 60     for(i=l-1;i>=0;i-=DLEN)
 61     {
 62         t=0;
 63         k=i-DLEN+1;
 64         if(k<0)
 65             k=0;
 66         for(int j=k;j<=i;j++)
 67             t=t*10+s[j]-'0';
 68         a[index++]=t;
 69     }
 70 }
 71 BigNum::BigNum(const BigNum & T) : len(T.len)  //拷贝构造函数
 72 { 
 73     int i; 
 74     memset(a,0,sizeof(a)); 
 75     for(i = 0 ; i < len ; i++)
 76         a[i] = T.a[i]; 
 77 } 
 78 BigNum & BigNum::operator=(const BigNum & n)   //重载赋值运算符,大数之间进行赋值运算
 79 {
 80     int i;
 81     len = n.len;
 82     memset(a,0,sizeof(a)); 
 83     for(i = 0 ; i < len ; i++) 
 84         a[i] = n.a[i]; 
 85     return *this; 
 86 }
 87 istream& operator>>(istream & in,  BigNum & b)   //重载输入运算符
 88 {
 89     char ch[MAXSIZE*4];
 90     int i = -1;
 91     in>>ch;
 92     int l=strlen(ch);
 93     int count=0,sum=0;
 94     for(i=l-1;i>=0;)
 95     {
 96         sum = 0;
 97         int t=1;
 98         for(int j=0;j<4&&i>=0;j++,i--,t*=10)
 99         {
100             sum+=(ch[i]-'0')*t;
101         }
102         b.a[count]=sum;
103         count++;
104     }
105     b.len =count++;
106     return in;
107 
108 }
109 ostream& operator<<(ostream& out,  BigNum& b)   //重载输出运算符
110 {
111     int i;  
112     cout << b.a[b.len - 1]; 
113     for(i = b.len - 2 ; i >= 0 ; i--)
114     { 
115         cout.width(DLEN); 
116         cout.fill('0'); 
117         cout << b.a[i]; 
118     } 
119     return out;
120 }
121 
122 BigNum BigNum::operator+(const BigNum & T) const   //两个大数之间的相加运算
123 {
124     BigNum t(*this);
125     int i,big;      //位数   
126     big = T.len > len ? T.len : len; 
127     for(i = 0 ; i < big ; i++) 
128     { 
129         t.a[i] +=T.a[i]; 
130         if(t.a[i] > MAXN) 
131         { 
132             t.a[i + 1]++; 
133             t.a[i] -=MAXN+1; 
134         } 
135     } 
136     if(t.a[big] != 0)
137         t.len = big + 1; 
138     else
139         t.len = big;   
140     return t;
141 }
142 BigNum BigNum::operator-(const BigNum & T) const   //两个大数之间的相减运算 
143 {  
144     int i,j,big;
145     bool flag;
146     BigNum t1,t2;
147     if(*this>T)
148     {
149         t1=*this;
150         t2=T;
151         flag=0;
152     }
153     else
154     {
155         t1=T;
156         t2=*this;
157         flag=1;
158     }
159     big=t1.len;
160     for(i = 0 ; i < big ; i++)
161     {
162         if(t1.a[i] < t2.a[i])
163         { 
164             j = i + 1; 
165             while(t1.a[j] == 0)
166                 j++; 
167             t1.a[j--]--; 
168             while(j > i)
169                 t1.a[j--] += MAXN;
170             t1.a[i] += MAXN + 1 - t2.a[i]; 
171         } 
172         else
173             t1.a[i] -= t2.a[i];
174     }
175     t1.len = big;
176     while(t1.a[len - 1] == 0 && t1.len > 1)
177     {
178         t1.len--; 
179         big--;
180     }
181     if(flag)
182         t1.a[big-1]=0-t1.a[big-1];
183     return t1; 
184 } 
185 
186 BigNum BigNum::operator*(const BigNum & T) const   //两个大数之间的相乘运算 
187 { 
188     BigNum ret; 
189     int i,j,up; 
190     int temp,temp1;   
191     for(i = 0 ; i < len ; i++)
192     { 
193         up = 0; 
194         for(j = 0 ; j < T.len ; j++)
195         { 
196             temp = a[i] * T.a[j] + ret.a[i + j] + up; 
197             if(temp > MAXN)
198             { 
199                 temp1 = temp - temp / (MAXN + 1) * (MAXN + 1); 
200                 up = temp / (MAXN + 1); 
201                 ret.a[i + j] = temp1; 
202             } 
203             else
204             { 
205                 up = 0; 
206                 ret.a[i + j] = temp; 
207             } 
208         } 
209         if(up != 0) 
210             ret.a[i + j] = up; 
211     } 
212     ret.len = i + j; 
213     while(ret.a[ret.len - 1] == 0 && ret.len > 1)
214         ret.len--; 
215     return ret; 
216 } 
217 BigNum BigNum::operator/(const int & b) const   //大数对一个整数进行相除运算
218 { 
219     BigNum ret; 
220     int i,down = 0;   
221     for(i = len - 1 ; i >= 0 ; i--)
222     { 
223         ret.a[i] = (a[i] + down * (MAXN + 1)) / b; 
224         down = a[i] + down * (MAXN + 1) - ret.a[i] * b; 
225     } 
226     ret.len = len; 
227     while(ret.a[ret.len - 1] == 0 && ret.len > 1)
228         ret.len--; 
229     return ret; 
230 }
231 int BigNum::operator %(const int & b) const    //大数对一个int类型的变量进行取模运算    
232 {
233     int i,d=0;
234     for (i = len-1; i>=0; i--)
235     {
236         d = ((d * (MAXN+1))% b + a[i])% b;  
237     }
238     return d;
239 }
240 BigNum BigNum::operator^(const int & n) const    //大数的n次方运算
241 {
242     BigNum t,ret(1);
243     int i;
244     if(n<0)
245         exit(-1);
246     if(n==0)
247         return 1;
248     if(n==1)
249         return *this;
250     int m=n;
251     while(m>1)
252     {
253         t=*this;
254         for( i=1;i<<1<=m;i<<=1)
255         {
256             t=t*t;
257         }
258         m-=i;
259         ret=ret*t;
260         if(m==1)
261             ret=ret*(*this);
262     }
263     return ret;
264 }
265 bool BigNum::operator>(const BigNum & T) const   //大数和另一个大数的大小比较
266 { 
267     int ln; 
268     if(len > T.len)
269         return true; 
270     else if(len == T.len)
271     { 
272         ln = len - 1; 
273         while(a[ln] == T.a[ln] && ln >= 0)
274             ln--; 
275         if(ln >= 0 && a[ln] > T.a[ln])
276             return true; 
277         else
278             return false; 
279     } 
280     else
281         return false; 
282 }
283 bool BigNum::operator >(const int & t) const    //大数和一个int类型的变量的大小比较
284 {
285     BigNum b(t);
286     return *this>b;
287 }
288 
289 void BigNum::print()    //输出大数
290 { 
291     int i;   
292     cout << a[len - 1]; 
293     for(i = len - 2 ; i >= 0 ; i--)
294     { 
295         cout.width(DLEN); 
296         cout.fill('0'); 
297         cout << a[i]; 
298     } 
299     cout << endl;
300 }
301 int main(void)
302 {
303     int i,n;
304     BigNum x[101];      //定义大数的对象数组
305     x[0]=1;
306     for(i=1;i<101;i++)
307         x[i]=x[i-1]*(4*i-2)/(i+1);
308     while(scanf("%d",&n)==1 && n!=-1)
309     {
310         x[n].print();
311     }
312 }

维基百科资料:

卡塔兰数

卡塔兰数组合数学中一个常出现在各种计数问题中出现的数列。由以比利时的数学家欧仁·查理·卡塔兰 (18141894)命名。

卡塔兰数的一般项公式为 C_n = \frac{1}{n+1}{2n \choose n} = \frac{(2n)!}{(n+1)!n!}                      另类递归式:  h(n)=((4*n-2)/(n+1))*h(n-1);

前几项为 (OEIS中的数列A000108): 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, ...

[性质]

Cn的另一个表达形式为C_n = {2n\choose n} - {2n\choose n-1} \quad\mbox{ for }n\ge 1 所以,Cn是一个自然数;这一点在先前的通项公式中并不显而易见。这个表达形式也是André对前一公式证明的基础。(见下文的第二个证明。)

卡塔兰数满足以下递推关系

C_0 = 1 \quad \mbox{and} \quad C_{n+1}=\sum_{i=0}^{n}C_i\,C_{n-i}\quad\mbox{for }n\ge 0.

它也满足

C_0 = 1 \quad \mbox{and} \quad C_{n+1}=\frac{2(2n+1)}{n+2}C_n,

这提供了一个更快速的方法来计算卡塔兰数。

卡塔兰数的渐近增长为

C_n \sim \frac{4^n}{n^{3/2}\sqrt{\pi}}

它的含义是左式除以右式的商趋向于1当n → ∞。(这可以用n!的斯特灵公式来证明。)

所有的奇卡塔兰数Cn都满足n = 2k − 1。所有其他的卡塔兰数都是偶数。

[应用]

组合数学中有非常多.的组合结构可以用卡塔兰数来计数。在Richard P. Stanley的Enumerative Combinatorics: Volume 2一书的习题中包括了66个相异的可由卡塔兰数表达的组合结构。以下用Cn=3和Cn=4举若干例:

  • Cn表示长度2n的dyck word的个数。Dyck word是一个有n个X和n个Y组成的字串,且所有的部分字串皆满足X的个数大于等于Y的个数。以下为长度为6的dyck words:
XXXYYY XYXXYY XYXYXY XXYYXY XXYXYY
  • 将上例的X换成左括号,Y换成右括号,Cn表示所有包含n组括号的合法运算式的个数:
((())) ()(()) ()()() (())() (()())
  • Cn表示有n+1个叶子的二叉树的个数。

                                                                       

  • Cn表示所有不同构的含n个分枝结点的满二叉树的个数。(一个有根二叉树是满的当且仅当每个结点都有两个子树或没有子树。)

证明:

令1表示进栈,0表示出栈,则可转化为求一个2n位、含n个1、n个0的二进制数,满足从左往右扫描到任意一位时,经过的0数不多于1数。显然含n个1、n个0的2n位二进制数共有{2n \choose n}个,下面考虑不满足要求的数目.

考虑一个含n个1、n个0的2n位二进制数,扫描到第2m+1位上时有m+1个0和m个1(容易证明一定存在这样的情况),则后面的0-1排列中必有n-m个1和n-m-1个0。将2m+2及其以后的部分0变成1、1变成0,则对应一个n+1个0和n-1个1的二进制数。反之亦然(相似的思路证明两者一一对应)。

从而C_n = {2n \choose n} - {2n \choose n + 1} = \frac{1}{n+1}{2n \choose n}。证毕。

  • Cn表示所有在n × n格点中不越过对角线的单调路径的个数。一个单调路径从格点左下角出发,在格点右上角结束,每一步均为向上或向右。计算这种路径的个数等价于计算Dyck word的个数: X代表“向右”,Y代表“向上”。下图为n = 4的情况:
  •                                                                         
  • Cn表示通过连结顶点而将n + 2边的凸多边形分成三角形的方法个数。下图中为n = 4的情况:

                                                                                 

  • Cn表示对{1, ..., n}依序进出置换个数。一个置换w是依序进出栈的当S(w) = (1, ..., n), 其中S(w)递归定义如下:令w = unv,其中nw的最大元素,uv为更短的数列;再令S(w) =S(u)S(v)n,其中S为所有含一个元素的数列的单位元。
  • Cn表示用n个长方形填充一个高度为n的阶梯状图形的方法个数。下图为 n = 4的情况:

                                                                                          



百度百科资料:
简介

  中文:卡特兰数
  Catalan数是组合数学中一个常出现在各种计数问题中出现的数列。由以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名。
  原理:
  令h(0)=1,h(1)=1,catalan数满足递归式:
  h(n)= h(0)*h(n-1) + h(1)*h(n-2) +  + h(n-1)h(0) (其中n>=2)
  该递推关系的解为:
  h(n)=C(2n,n)/(n + 1) (n=1,2,3,)
       另类递归式:  h(n)=((4*n-2)/(n+1))*h(n-1);
  
  前几项为 (OEIS中的数列A000108): 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, 
应用

  我总结了一下,最典型的四类应用:(实质上却都一样,无非是递归等式的应用,就看你能不能分解问题写出递归式了)
1.括号化问题。

  矩阵链乘: P=a1×a2×a3×……×an,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?(h(n)种)
2.出栈次序问题。

  一个栈(无穷大)的进栈序列为1,2,3,..n,有多少个不同的出栈序列?
  类似:
  (1)有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)
  (2)在圆上选择2n个点,将这些点成对连接起来,使得所得到的n条线段不相交的方法数。
3.将多边行划分为三角形问题。

  将一个凸多边形区域分成三角形区域的方法数?
  类似:一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区去上班。如果她
  从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路?
  类似:在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数?
4.给顶节点组成二叉树的问题。

  给定N个节点,能构成多少种形状不同的二叉树?
  (一定是二叉树!
  先去一个点作为顶点,然后左边依次可以取0至N-1个相对应的,右边是N-1到0个,两两配对相乘,就是h(0)*h(n-1) + h(2)*h(n-2) +  + h(n-1)h(0)=h(n))
  (能构成h(N)个)

转载于:https://www.cnblogs.com/wushuaiyi/p/3627109.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值