[Ynoi2016]这是我自己的发明(莫队)

话说这道题数据是不是都是链啊,我不手动扩栈就全 \(RE\)...

不过 \(A\) 了这题还是很爽的,通过昨晚到今天早上的奋斗,终于肝出了这题

其实楼上说的也差不多了,就是把区间拆掉然后莫队瞎搞

弱化版:bzoj [SNOI2017]一个简单的询问

那我先讲弱化版吧

可以发现
\[\sum_{x=0}^{inf}get(l_1,r_1,x)\times get(l_2,r_2,x)=\sum_{x=0}^{inf}get(0,r_1,x)\times get(0,r_2,x)-\sum_{x=0}^{inf}get(0,l_1-1,x)\times get(0,r_2,x)\]
\[-\sum_{x=0}^{inf}get(0,r_1,x)\times get(0,l_2-1,x)+\sum_{x=0}^{inf}get(0,l_1-1,x)\times get(0,l_2-1,x)\]

我们对上面的式子直接上莫队,开两个数组统计即可

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=100000+10;
int n,m,a[maxn],b[maxn],c[maxn],tot,blo;ll ans[maxn],now;

struct Query{
    int l,r,id,v;
}q[maxn<<2];

bool cmp(Query a,Query b){
    if((a.l-1)/blo!=(b.l-1)/blo)
        return (a.l-1)/blo<(b.l-1)/blo;
    return a.r<b.r;
}

inline int read(){
    register int x=0,f=1;char ch=getchar();
    while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
    while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
    return (f==1)?x:-x;
}

inline void addb(int x){now+=(ll)c[a[x]];b[a[x]]++;}
inline void delb(int x){now-=(ll)c[a[x]];b[a[x]]--;}
inline void addc(int x){now+=(ll)b[a[x]];c[a[x]]++;}
inline void delc(int x){now-=(ll)b[a[x]];c[a[x]]--;}

int main()
{
    n=read();blo=sqrt(n);
    for(int i=1;i<=n;i++) a[i]=read();
    m=read();
    int l1,r1,l2,r2;
    for(int i=1;i<=m;i++){
        l1=read(),r1=read(),l2=read(),r2=read();
        q[++tot]=(Query){r1,r2,i,1};
        if(l1>1) q[++tot]=(Query){l1-1,r2,i,-1};
        if(l2>1) q[++tot]=(Query){l2-1,r1,i,-1};
        if(l1>1&&l2>1) q[++tot]=(Query){l1-1,l2-1,i,1}; 
    }
    sort(q+1,q+tot+1,cmp);
    int L=0,R=0;
    for(int i=1;i<=tot;i++){
        while(L<q[i].l) addb(++L);
        while(L>q[i].l) delb(L--);
        while(R<q[i].r) addc(++R);
        while(R>q[i].r) delc(R--);
        ans[q[i].id]+=(ll)q[i].v*now;
    }
    for(int i=1;i<=m;i++)
        printf("%lld\n",ans[i]);
    return 0;
}

然后写完弱化版就来做这题了……我的代码洛谷 \(AC\)\(bzoj\ AC\)\(loj\ TLE\),强行上 \(fread\ fwrite\) 才卡过去

其实这道题差不多,转化为 \(dfs\) 序,然后类似树剖换根的思想分类讨论:

1、\(x=rt\)

2、\(rt\) 在以 \(1\) 为根时 \(x\) 的子树中

3、\(rt\) 不在以 \(1\) 为根时 \(x\) 的子树中

然后第一种和第三种情况比较简单,第二种情况要找 \(rt\) 在哪里,我用的树剖,其实还可以用倍增,转化为两段区间,然后合并 \(x\) 的区间和 \(y\) 的区间

那么就要分九种情况讨论了 怪不得lxl的题目那么毒瘤

严重压行后 \(91\) 行,还是比较清爽的

\(Code\ Below:\)

#pragma comment(linker, "/STACK:102400000,102400000")
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=100000+10;
int n,m,rt=1,a[maxn],mp[maxn],b[maxn],c[maxn],cnt,blo,t;ll ans[maxn*5],now;
int top[maxn],siz[maxn],son[maxn],fa[maxn],id[maxn],head[maxn],to[maxn<<1],nxt[maxn<<1],tot,tim;
struct Query{int l,r,id,v;}q[maxn*80];
bool cmp(Query a,Query b){return ((a.l-1)/blo!=(b.l-1)/blo)?((a.l-1)/blo<(b.l-1)/blo):(a.r<b.r);}
inline int read(){
    register int x=0,f=1;char ch=getchar();
    while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
    while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
    return (f==1)?x:-x;
}
inline void add(int x,int y){to[++tot]=y;nxt[tot]=head[x];head[x]=tot;}
void dfs1(int x,int f){
    siz[x]=1;fa[x]=f;int maxson=-1;
    for(int i=head[x];i;i=nxt[i])
        if(to[i]!=f){
            dfs1(to[i],x);siz[x]+=siz[to[i]];
            if(maxson<siz[to[i]]) maxson=siz[to[i]],son[x]=to[i];
        }
}
void dfs2(int x,int topf){
    id[x]=++tim;mp[tim]=a[x];top[x]=topf;
    if(son[x]) dfs2(son[x],topf);
    for(int i=head[x];i;i=nxt[i])
        if(to[i]!=fa[x]&&to[i]!=son[x]) dfs2(to[i],to[i]);
}
inline int getson(int x,int y){
    while(top[x]!=top[y]){x=top[x];if(fa[x]==y) return x;x=fa[x];}
    return son[y];
}
inline void addb(int x){now+=(ll)c[mp[x]];b[mp[x]]++;}
inline void delb(int x){now-=(ll)c[mp[x]];b[mp[x]]--;}
inline void addc(int x){now+=(ll)b[mp[x]];c[mp[x]]++;}
inline void delc(int x){now-=(ll)b[mp[x]];c[mp[x]]--;}
inline void Add(int l1,int r1,int l2,int r2,int id){
    if(l1<1||l2<1||r1>n||r2>n||l1>r1||l2>r2) return ;
    q[++cnt]=(Query){r1,r2,id,1};
    if(l1>1) q[++cnt]=(Query){l1-1,r2,id,-1};
    if(l2>1) q[++cnt]=(Query){l2-1,r1,id,-1};
    if(l1>1&&l2>1) q[++cnt]=(Query){l1-1,l2-1,id,1};    
}
int main()
{
    n=read(),m=read();blo=sqrt(n);
    int i,opt,x,y,z,l1,r1,j=0,L=0,R=0;
    for(i=1;i<=n;i++) mp[i]=a[i]=read();
    sort(mp+1,mp+n+1);t=unique(mp+1,mp+n+1)-mp-1;
    for(i=1;i<=n;i++) a[i]=lower_bound(mp+1,mp+t+1,a[i])-mp;
    for(i=1;i<n;i++){x=read(),y=read();add(x,y);add(y,x);}
    dfs1(rt,0);dfs2(rt,rt);
    for(i=1;i<=m;i++){
        opt=read();
        if(opt==1) rt=read();
        if(opt==2){
            j++;x=read(),y=read();
            if(x==rt){
                if(y==rt) Add(1,n,1,n,j);
                else if(id[y]<id[rt]&&id[rt]+siz[rt]<=id[y]+siz[y]) 
                    z=getson(rt,y),Add(1,n,1,id[z]-1,j),Add(1,n,id[z]+siz[z],n,j);
                else Add(1,n,id[y],id[y]+siz[y]-1,j);
            }
            else if(id[x]<id[rt]&&id[rt]+siz[rt]<=id[x]+siz[x]){
                z=getson(rt,x);l1=id[z];r1=id[z]+siz[z]-1;
                if(y==rt) Add(1,l1-1,1,n,j),Add(r1+1,n,1,n,j);
                else if(id[y]<id[rt]&&id[rt]+siz[rt]<=id[y]+siz[y])
                    z=getson(rt,y),Add(1,l1-1,1,id[z]-1,j),Add(1,l1-1,id[z]+siz[z],n,j),Add(r1+1,n,1,id[z]-1,j),Add(r1+1,n,id[z]+siz[z],n,j);
                else Add(1,l1-1,id[y],id[y]+siz[y]-1,j),Add(r1+1,n,id[y],id[y]+siz[y]-1,j);
            }
            else {
                if(y==rt) Add(id[x],id[x]+siz[x]-1,1,n,j);
                else if(id[y]<id[rt]&&id[rt]+siz[rt]<=id[y]+siz[y])
                    z=getson(rt,y),Add(id[x],id[x]+siz[x]-1,1,id[z]-1,j),Add(id[x],id[x]+siz[x]-1,id[z]+siz[z],n,j);
                else Add(id[x],id[x]+siz[x]-1,id[y],id[y]+siz[y]-1,j);
            }
        }
    }
    sort(q+1,q+cnt+1,cmp);
    for(i=1;i<=cnt;i++){
        while(L<q[i].l) addb(++L);
        while(L>q[i].l) delb(L--);
        while(R<q[i].r) addc(++R);
        while(R>q[i].r) delc(R--);
        ans[q[i].id]+=(ll)q[i].v*now;
    }
    for(i=1;i<=j;i++) printf("%lld\n",ans[i]);
    return 0;
}

转载于:https://www.cnblogs.com/owencodeisking/p/10003463.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值