POJ 1737 Connected Graph(高精度+DP递推)

题面

VrjoXF.png



\(solution:\)

首先做个推销:带负数的压位高精度(加减乘+读写)

然后:由 \(N\) 个节点组成的无向图的总数为: \(2^{N*(N-1)/2}\) (也就是说这个图总共有 \(N*(N-1)/2\) 条边,每一条边选或不选就可以得出来)

然后我们直接开始分析题目,因为这道题需要求无向连通图的方案数,这道题似乎也不是一个结论题, \(wch\) 决定去找找规律,是不是 \(n\)\(n-1\) 有什么关系,但是 $wch $ 发现他打不出表。 然后 $wch $ 想到了分治合并,但如果将它分为两份 \(\frac{n}{2}\) 似乎更不好合并了。但是他依旧觉得这题肯定可以用分开合并的方法(于是他觉得应该直接DP)。(说白了就是他比较傻,现在才想到直接DP)。

然后他试图写出转移方程,然后他懵了。他发现很难不重不漏的把所有情况算进去(两个联通图暴力连边会导致重复),但是他发现如果两个联通图中间不连边就可以组成一个不连通图,于是他恍然大悟:似乎可以用所有图的方案数减去不连通的方案数!而一个不连通图一定有若干个连通图组成,我们可以围绕一个连通图来数方案,于是一个转移应运而生:我们钦定有 \(k\) 个节点在左边某个联通图里(可以用组合数选 \(k\) 个),剩下的 \(i-k\) 个节点在右边的图里,但是这样仔细一想也会重复。为什么呢?我们围绕的那个 \(k\) 个节点组成的连通图是不确定的,他有可能被后面的枚举中( $i-k $ 所组成的图)取到。所以我们要把它固定下来,(在算法竞赛里称为找基准点,并围绕它构造一个不可划分的整体)于是我们钦定一号节点在左边那个连通图中,这样我们就能不重不漏的算下左右情况了!

\(F[i]\) 表示有 \(i\) 个节点组成的联通图的个数有多少个,我们考虑这个怎么转移过来的:首先枚举左边的连通图的大小 $ 1<k<i $ ,然后我们要钦定一号结点在里面,所以我们只需要从剩下的 $ i-1$ 个 节点里选出 \(k-1\) 个即可(显然可以选 \(C^{k-1}_{i-1}\) 种),然后这 \(k\) 个节点是需要组成一个连通图的,所以再乘上一个 \(F[k]\) 然后我们还需要乘上后面的 \(i-k\) 个节点组成的任意图即: \(2^{(i-k)*(i-k-1)/2}\) 于是转移方程即为:

\(F[i]=2^{i*(i-1)/2}-\sum^{i-1}_{k=1}\{C^{k-1}_{i-1}*F[k]*2^{(i-k)*(i-k-1)/2}\}\)



\(code:\)

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>

#define ll long long
#define db double
#define inf 0x7fffffff
#define rg register int

using namespace std;

int n;

struct gj{
    
    bool fu; //是否是负数
    int tt,mod; //高精的长度
    int s[1005]; //压位用的数组
    
    inline gj(){ //整体初始化
        fu=0; tt=0; mod=1e9;
        memset(s,0,sizeof(s));
    }
    
    inline gj read(){  register char ch; //高精度读入
        while(!isdigit(ch=getchar()))if(ch=='-')fu=1;
        char _[100005]; rg l=0,r=-1; _[0]=ch;
        while(isdigit(_[++l]=getchar()));; tt=l/9-!(l%9);
        for(rg i=(l-1)%9+1;i;--i) (s[tt]*=10)+=_[++r]^48;
        for(rg i=tt-1;i>=0;--i)for(rg j=0;j<9;++j)(s[i]*=10)+=(_[++r]^48);
        while(tt&&!s[tt])--tt;; return (*this);
    }
    inline void print(){ //高精度输出
        if(fu)putchar('-');
        printf("%d",s[tt]);
        for(rg i=tt-1;i>=0;--i)
            printf("%09d",s[i]);
        putchar('\n');
    }

    inline bool operator >(const gj &x){ //定义大于
        if(tt!=x.tt)return tt>x.tt;
        for(rg i=tt;i>=0;--i)
            if(s[i]!=x.s[i])return s[i]>x.s[i];
        return 0;
    }
    inline bool operator <(const gj &x){ //定义小于
        if(tt!=x.tt)return tt<x.tt;
        for(rg i=tt;i>=0;--i)
            if(s[i]!=x.s[i])return s[i]<x.s[i];
        return 0;
    }

    inline gj operator =(int x){ //int的等于
        while(tt)s[tt]=0,--tt;
        s[0]=x%mod; s[1]=x/mod;
        if(s[1])tt=1;; return *this;
    }
    inline gj operator =(ll x){ //int的等于
        while(tt)s[tt]=0,--tt;
        while(x)s[tt]=x%mod,x/=mod,++tt;
        if(!s[tt])--tt;; return *this;
    }

    inline void add(const gj &x){ //加法的底层
        rg sign=0; if(x.tt>tt)tt=x.tt;
        for(rg i=0;i<=tt;++i){
            s[i]+=x.s[i]+sign; sign=0;
            if(s[i]>mod)s[i]-=mod,sign=1;
        }if(sign)s[++tt]=1;
    }

    inline void cut(const gj &x){ //减法的底层
        if(fu)cout<<54564<<endl;
        rg sign=0; 
        for(rg i=0;i<=tt;++i){
            s[i]-=x.s[i]+sign; sign=0;
            if(s[i]<0)s[i]+=mod,sign=1;
        }while(tt&&!s[tt])--tt;
        if(!tt&&!s[tt]) fu=0;
    }

    inline void mul(const gj &x){ //乘法的底层
        gj y; ll num; y.tt=tt+x.tt;
        for(rg i=0;i<=tt;++i){ num=0;
            for(rg j=0;j<=x.tt;++j){
                num=(ll)s[i]*x.s[j]+y.s[j+i]+num;
                y.s[j+i]=num%mod; num/=mod;
            } if(num)y.s[x.tt+i+1]=num;
        }if(num)++y.tt;; *this=y;
    }

    inline void operator +=(gj x){ //赋值加法重载
        if(fu==x.fu){(*this).add(x); return;}
        if(*this>x) (*this).cut(x);
        else x.cut(*this),*this=x,fu^=1;
    }
    inline gj operator +(const gj &x){ //加法正常重载
        gj y=*this; y+=x; return y;
    }
    
    inline void operator -=(gj x){ //赋值减法重载
        if(fu!=x.fu){(*this).add(x); return;}
        if(*this>x){(*this).cut(x); return;}
        x.cut(*this); *this=x; if(s[tt])fu^=1;
    }
    inline gj operator -(const gj &x){ //减法正常重载
        gj y=*this; y-=x; return y;
    }
    
    inline void operator *=(gj x){ //赋值乘法重载
        if(!s[tt]||!x.s[x.tt]){gj y; *this=y;}
        if(fu!=x.fu)fu=1;else fu=0;; (*this).mul(x);
    }
    inline gj operator *(const gj &x){ //乘法正常重载
        gj y=*this; y*=x; return y;
    }

    inline gj operator *(int x){  gj y; y=x; return (*this)*y;}
    inline void operator *=(int x){gj y; y=x; (*this)*=y;}
    inline gj operator +(int x){  gj y; y=x; return (*this)+y;}
    inline void operator +=(int x){gj y; y=x; (*this)+=y;}
    inline gj operator -(int x){  gj y; y=x; return (*this)-y;}
    inline void operator -=(int x){gj y; y=x; (*this)-=y;}
}f[51],pf[1235],c[51][51];

inline int qr(){
    register char ch; register bool sign=0; rg res=0;
    while(!isdigit(ch=getchar())) if(ch=='-')sign=1;
    while(isdigit(ch)) res=res*10+(ch^48),ch=getchar();
    return sign?-res:res;
}

int main(){
    //freopen("in.in","r",stdin);
    //freopen("out.out","w",stdout);
    pf[0]=1; n=50;
    for(rg i=0;i<=50;++i) c[i][0]=1;
    for(rg i=0;i<=1225;++i) pf[i+1]=pf[i]*2;
    for(rg i=1;i<=50;++i)
        for(rg j=1;j<=50;++j)
            c[i][j]=c[i-1][j]+c[i-1][j-1];
    f[1]=1; f[2]=1;
    for(rg i=3;i<=n;++i){
        f[i]=pf[i*(i-1)/2];
        for(rg j=1;j<i;++j)
            f[i]-=f[j]*c[i-1][j-1]*pf[(i-j)*(i-j-1)/2];
    } while((n=qr()))f[n].print();
    return 0;
}

转载于:https://www.cnblogs.com/812-xiao-wen/p/10995815.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值