atitit.提升稳定性---hibernate 增加重试retry 机制解决数据库连接关闭

Hibernate增加重试机制解决数据库连接关闭
博客围绕提升稳定性,介绍了hibernate增加重试retry机制解决数据库连接关闭的方法。包含流程总结,定义了重试次数、调用器、测试器和重设器等;还给出了相关类和方法的代码,如retryO7带reset方法,以及getSessionOri方法。

atitit.提升稳定性---hibernate 增加重试retry 机制解决数据库连接关闭

 

1. 流程总结

retry(5times).invoke(xxx).test().rest().$() throw OvertimeEX

 

retry(5times):: throw OvertimeEX

 

 调用器() /// 调用原来的api

  测试器() :::://////返回T/f

  Reset()     //// 重设器

 

End::

 

测试器()

命令Case1 ok, 返回T

Case2 fail, 返回F,>>重试

Case3 ex,返回F>>>重试

 

 

作者:: 老哇的爪子 Attilax 艾龙,  EMAIL:1466519819@qq.com

转载请注明来源: http://blog.csdn.net/attilax

 

2. class 

Deprecated

public abstract class retry

 

这个马reset 方法

 

 

3. retryO7  带reset方法

 

 public static Session getSession() {

// attilax 老哇的爪子 i4148 o78

//for log rzt detail msg... normal use not neccesry...

retryRzt rzt = new retryRzt();

return new retryO7<Session>(5, rzt) {

 

@Override

public Boolean item(Object t) throws Exception {

// attilax 老哇的爪子 下午11:49:37 2014年6月9日

final Session sess = getSessionOri();

this.setResetObj(sess);

 

List li = sess.createQuery("select 1").list();

// core.ex4test();

 

if (li.size() > 0) {

this.setResult(sess);

return true;

}

 

return false;

 

}

// return null;

 

@Override

public void reset(final Object sessObj) {

 

core.log("---o79: conn is close ,now startclose session..");

 Session sess = (Session) sessObj;

sess.close();

 

}

}.$O69();

}

 

 

4. getSessionOri

  public static Session getSessionOri() throws HibernateException {

        Session session = (Session) threadLocal.get();

 

if (session == null || !session.isOpen()) {

if (sessionFactory == null) {

rebuildSessionFactory();

}

session = (sessionFactory != null) ? sessionFactory.openSession()

: null;

threadLocal.set(session);

}

 

        return session;

    }

我要啦免费统计

转载于:https://www.cnblogs.com/attilax/p/5963885.html

内容概要:本文介绍了一个基于MATLAB实现的无人机三维路径规划项目,采用蚁群算法(ACO)与多层感知机(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习与启发因子优化,实现路径的动态调整与多目标优化。项目解决了高维空间建模、动态障碍规避、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算与参数自适应机制提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练与融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法与神经网络的高校学生、科研人员及从事无人机路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、机器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人机路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑与实时避障等多目标协同优化;③为智能无人系统的自主决策与环境适应能力提供算法支持; 阅读建议:此资源结合理论模型与MATLAB实践,建议读者在理解ACO与MLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合机制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值