java微积分计算步骤_一次刨根问底的收获——从一道微积分题说开去

本文讲述了作者在解答一名大学生关于微积分问题的过程中,重温微积分基础知识,包括不定积分、分部积分等,并强调理解原理的重要性。通过详细的解题步骤分析,探讨了加法的结合律、交换律、逆元等数学概念,以及积分运算的线性性质。作者认为,掌握数学原理而非机械记忆知识,有助于培养解决问题的思维能力和自动化求解的能力。
摘要由CSDN通过智能技术生成

232b3c0a0ef6a0379a11a318ee97155b.png

几个月前的一天,公众号有个粉丝通过后台联系我,说是大一学生马上要期末考试了,有些高数问题能不能请教下。

要知道,我对数学和魔术相关需求,简直就像自己家里的事一样,那是来者不拒的。所以我就说,你发来看看。

说实话,解微积分少说也是8年前的事了,就算印象再深刻,也有可能忘了一些基本原理,不熟练以至于有答不上来的尴尬。所以我答应完了还有些紧张,心里想,这做不出来就丢人了。没想到,在和他交流的过程中,就像在魔术里我看到一个作品后去一点点追溯我自己学习和感悟的历史一样,从他给我的题中,就像串了珠子的线一样,我也跟着这些线索找到了很多以前背过理解过的知识,定理。什么不定积分啦,分部积分法则啦,含参积分,洛必达法则等等。虽然今天买菜是用不上了,但是做得好不过瘾。虽然定理的名字和具体内容我丝毫想不起来,可是问题一到,再加一个百度就基本能查到怎么解决。

这更给我信心去坚信自己推崇的学习理念:原理的理解永远比表面知识的掌握更重要。有了原理你永远可以在任何时候拿着绳头一样重新把所有知识串出来,而知识机械记忆的话,任何一处断了,那就永远地断了,而且剩下留下的短绳还会在脑海里搅成一团浆糊。

谢谢这位同学给我回忆美好青春的机会。到今天,我一边做着工程师,一边也没忘了自己想永

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值