Felicity's Big Secret Revealed codeforces 757D(状压DP)

原题地址

题解

算法复杂度 \(O(2^{n}*len*log_2(len))\)

dp[i][S] 表示在第 \(i\) 个数后状态为 \(S\) 的时候的方案数.
num[i][j] 表示 \(i\)\(j\) 组成的数字.

①首先预处理出 num[i][j] 根据 \(len<=75\) 得出 \(max<=20\)
\(len_{max}<=5\) 所以 \(j-i<=5\);

②通过 \(len\) 计算出 \(n\)

③状态转移方程
\[dp[j][S|(1<<num[i][j]-1)+=dp[i][S];\]

④初值为
dp[i][0]=1 其中 \(i\)\(1 \to n-1\)

⑤计算 bin[] 数组
\(bin[i]=2^i-1\)

\[ans=\sum_{j=0}^n dp[bin[i]][j]\]

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=80,mod=1e9+7;
int n;
int x[maxn],num[maxn][maxn],limit=0;
int dp[76][(1<<20)+5];
int bin[22];
void readn()
{
    getchar();
    for(int i=1;i<=n;i++)
    x[i]=getchar()-'0';
}
void get_01()
{
    for(register int i=0;i<=n-1;i++)
    for(register int j=i+1;j<=n;j++)
    {
        int temp=1;
        for(register int k=j;k>=i+1;k--)
        {
            num[i][j]+=x[k]*temp;
            temp*=2;
            if(num[i][j]>22)
                break;
        }
    }
}
int main()
{
    int temp=2;
    for(int i=1;i<=21;i++)
    {
        bin[i]=temp-1;
        temp=temp*2;
    }
    limit=20;
    scanf("%d",&n);
    readn();
    get_01();
    for(register int i=0;i<=n;i++)dp[i][0]=1;
    for(register int j=0;j<=n-1;j++)
    for(register int i=0;i<=(1<<limit)-1;i++)
    {
    if(!dp[j][i]) continue;
    for(register int k=j+1;k<=n;k++)
    {
        if(num[j][k]>limit)break;
        if(num[j][k]==0)continue;
        dp[k][i|(1<<num[j][k]-1)]=(dp[k][i|(1<<num[j][k]-1)]+dp[j][i])%mod; 
    }
    }
    int sum=0;
    for(register int i=1;bin[i]<=(1<<limit)-1;i++)
    for(register int j=0;j<=n;j++)
    {
        sum+=dp[j][bin[i]];
        sum%=mod;
    }
    printf("%d\n",sum);
}

转载于:https://www.cnblogs.com/Harry-bh/p/8758998.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值