Codeforces 805D/804B - Minimum number of steps

传送门:http://codeforces.com/contest/805/problem/D

对于一个由‘a’、‘b’组成的字符串,有如下操作:将字符串中的一个子串“ab”替换成“bba”。当字符串中不含有子串“ab”时,任务完成。求完成任务的最小操作次数(mod109+7)。

最终,字符串的形式为:

bbb...baaa...a

可以考虑寻找规律:

a.

i)“ab”→“bba”,

ii)“aab”→“abba”→“bbaba”→“bbbbaa”,

iii)“aaab”→“aabba”→“abbaba”→“bbababa”→“bbbbaaba”→“bbbbabbaa”→“bbbbbbabaa”→“bbbbbbbbaaa”;

b.

i)“ab”→“bba”,

ii)“abb”→“bbab”→“bbbba”,

iii)“abbb”→“bbabb”→“bbbbab”→“bbbbbba”。

可见,$"\underbrace{a\cdots a}_{n}b"$型字符串的操作次数为2n-1,$"a\underbrace{b\cdots b}_{m}"$型字符串的操作次数为m。下证之:

a.(证:$"a\underbrace{b\cdots b}_{m}"$型字符串的操作次数为m

i)当m=1时,“ab”→“bba”,操作次数为1;

ii)假设当m=k时,$"a\underbrace{b\cdots b}_{k}"$→$"\underbrace{b\cdots b}_{2k}a"$,操作次数为k,则当m=k+1时:

由$"a\underbrace{b\cdots b}_{2k+1}b"$→$"\underbrace{b\cdots b}_{2k}ab"$的操作次数为k,由$"\underbrace{b\cdots b}_{2k}ab"$→$"\underbrace{b\cdots b}_{2k}bba"$的操作次数为1。故由$"a\underbrace{b\cdots b}_{2k+1}"$→$"\underbrace{b\cdots b}_{2k+2}a"$的操作次数为k+1。

b.(证:$"\underbrace{a\cdots a}_{n}b"$型字符串的操作次数为2n-1)

i)当n=1时,“ab”→“bba”,操作次数为1;

ii)假设当n=k时,$"\underbrace{a\cdots a}_{k}b"$→$"\underbrace{b\cdots b}_{2^{k}}\underbrace{a\cdots a}_{k}"$,操作次数为2k-1,则当n=k+1时:

由$"a\underbrace{a\cdots a}_{k}b"$→$"a\underbrace{b\cdots b}_{2^{k}}\underbrace{a\cdots a}_{k}"$的操作次数为2k-1,由$"a\underbrace{b\cdots b}_{2^{k}}\underbrace{a\cdots a}_{k}"$→$"\underbrace{b\cdots b}_{2^{k}}\underbrace{b\cdots b}_{2^{k}}a\underbrace{a\cdots a}_{n}"$的操作次数为2k。故由$"\underbrace{a\cdots a}_{k+1}b"$→$"\underbrace{b\cdots b}_{2^{k+1}}\underbrace{a\cdots a}_{k+1}"$的操作次数为2k-1+2k=2k+1-1。

考虑一般的情形:

设字符串的长度为len,其中,字符‘b’占据位置p1,p2,...,pn。这个字符串对应的操作次数为:$\sum_{i=1}^{n}(2^{p_{i}-i}-1)$。

若1..pi的字符‘a’个数为cnti,则cnti=pi-i。这个字符串对应的操作次数为:$\sum_{i=1}^{n}(2^{cnt_{i}}-1)$。

下证之:

A为只含有字符‘a’的字符串,B为只含有字符‘b’的字符串;AB可为空。)

i)当n=1时,$"\underbrace{a\cdots a}_{cnt_{1}}\underset{1}{b}"$→"BA",操作次数为$2^{cnt_{1}}-1$;

ii)假设当n=k时,$"A\underset{1}{b}\cdots A\underset{k}{b}\cdots"$→"BA"的操作次数为$\sum_{i=1}^{k}(2^{cnt_{i}}-1)$,则当n=k+1时:

由$"A\underset{1}{b}\cdots A\underset{k}{b}A\underset{k+1}{b}\cdots"$→$"BA*\underset{k+1}{b}\cdots"$的操作次数为$\sum_{i=1}^{k}(2^{cnt_{i}}-1)$,A*的长度为cntk+1,则由$"BA*\underset{k+1}{b}\cdots"$→"BA"的操作次数为$2^{cnt_{k+1}}-1$。故由$"A\underset{1}{b}\cdots A\underset{k}{b}A\underset{k+1}{b}\cdots"$→"BA"的操作次数为$\sum_{i=1}^{k+1}(2^{cnt_{i}}-1)$。

参考程序如下:

#include <stdio.h>
#define MOD 1000000007

int pwr(long long x, int p)
{
    if (p == 0) return 1;
    if (p & 1) return x * pwr(x, p - 1) % MOD;
    return pwr(x * x % MOD, p >> 1) % MOD;
}

int main(void)
{
    char ch;
    int cnt = 0, ans = 0;
    while ((ch = getchar()) != '\n') {
        if (ch == 'a') cnt++;
        else {
            ans += pwr(2, cnt) - 1;
            ans %= MOD;
        }
    }
    printf("%d\n", ans);
}

 

转载于:https://www.cnblogs.com/siuginhung/p/7723003.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值