Flink 支持广播变量,就是将数据广播到具体的 taskmanager 上,数据存储在内存中,这样可以减缓大量的 shuffle 操作;
比如在数据 join 阶段,不可避免的就是大量的 shuffle 操作,我们可以把其中一个 dataSet 广播出去,一直加载到 taskManager 的内存中,可以直接在内存中拿数据,避免了大量的 shuffle,导致集群性能下降;
广播变量创建后,它可以运行在集群中的任何 function 上,而不需要多次传递给集群节点。另外需要记住,不应该修改广播变量,这样才能确保每个节
点获取到的值都是一致的。
一句话解释,可以理解为是一个公共的共享变量,我们可以把一个 dataset数据集广播出去,然后不同的 task 在节点上都能够获取到,这个数据在每个节
点上只会存在一份。如果不使用 broadcast,则在每个节点中的每个 task 中都需要拷贝一份 dataset 数据集,比较浪费内存(也就是一个节点中可能会存在多份dataset 数据)。
注意:因为广播变量是要把 dataset 广播到内存中,所以广播的数据量不能太大,否则会出现 OOM 这样的问题
- Broadcast:Broadcast 是通过 withBroadcastSet(dataset,string)来注册的
- Access:通过 getRuntimeContext().getBroadcastVariable(String)访问广播变量
操作步骤
1:初始化数据 DataSet<Integer> toBroadcast = env.fromElements(1, 2, 3) 2:广播数据 .withBroadcastSet(toBroadcast, "broadcastSetName"); 3:获取数据 Collection<Integer> broadcastSet = getRuntimeContext().getBroadcastVariable("broadcastSetName"); |
|
package com.starzy
import org.apache.flink.api.common.functions.RichMapFunction import org.apache.flink.api.scala.ExecutionEnvironment import org.apache.flink.configuration.Configuration import org.apache.flink.api.scala._ import scala.collection.mutable import scala.collection.mutable.ArrayBuffer import scala.util.Random
object BrodCast { def main(args: Array[String]): Unit = { val env: ExecutionEnvironment = ExecutionEnvironment. getExecutionEnvironment
//TODO data2 join data3 的数据,使用广播变量完成 的数据,使用广播变量完成 val data2 = new mutable.MutableList[(Int, Long, String)] data2.+=((1, 1L, "Hi")) data2.+=((2, 2L, "Hello")) data2.+=((3, 2L, "Hello world")) val ds1 = env.fromCollection(Random.shuffle(data2)) val data3 = new mutable.MutableList[(Int, Long, Int, String, Long)] data3.+=((1, 1L, 0, "Hallo", 1L)) data3.+=((2, 2L, 1, "Hallo Welt", 2L)) data3.+=((2, 3L, 2, "Hallo Welt wie", 1L)) val ds2 = env.fromCollection(Random.shuffle(data3))
//todo 使用内部类 RichMapFunction ,提供 open 和 map ,可以完成 join 的操作 的操作 val result = ds1.map(new RichMapFunction[(Int , Long , String) , ArrayBuffer[(Int , Long , String , String)]] {
var brodCast :mutable.Buffer[(Int, Long, Int, String, Long)] = null override def open(parameters: Configuration): Unit = { import scala.collection.JavaConverters._ //asScala 需要使用隐式转换 brodCast = this.getRuntimeContext.getBroadcastVariable[(Int, Long, Int, String, Long)]("ds2").asScala } override def map(value: (Int, Long, String)):ArrayBuffer[(Int , Long , String , String)] = { val toArray: Array[(Int, Long, Int, String, Long)] = brodCast .toArray val array = new mutable.ArrayBuffer[(Int , Long , String , String)] var index = 0 var a:(Int, Long, String, String) = null while(index < toArray.size){ if(value._2 == toArray(index)._5){ a = (value._1 , value._2 , value._3 , toArray(index)._4) array += a } index = index + 1 } array } }).withBroadcastSet(ds2 , "ds2") println (result.collect()) } } |