数论初步

分数的和取模

考虑两个分数 $\frac ab, \frac cd$($a,b, c, d\in \mathbb{Z}$,$b,d > 0$),正整数 $m$ 和 $b, d$ 都互质。若正整数 $x$ 与 $m$ 互质,用 $x^{-1}$ 表示 $x$ 在模 $m$ 下的逆元。则有
$ab^{-1} + cd^{-1} \equiv (ad + bc) (bd)^{-1} \pmod{m}$

这意味着满足上述条件的两个分数相加时,先对分数取模再相加和先把两分数相加再取模结果相等。

线性时间求逆元

对于素数 $p$,可以在线性时间内求出 $1, 2, \dots, p-1$ 在模 $p$ 下的逆元。
首先有 $1^{-1} = 1 \pmod{p}$,对于 $ 2 \le i < p$,设 $ p = ki + r$($0< r < i$),即
\[ ki + r = 0 \pmod{p} \]
两边同乘以 $i^{-1} r^{-1}$,有
\[
kr^{-1} + i^{-1} = 0 \pmod{p}
\]
于是
\[
i^{-1} = - kr^{-1} = - \lfloor p/i \rfloor r^{-1} \pmod{p}
\]
其中 $r^{-1}$ 已经求出。

关于欧拉函数的一个等式

\[ \sum_{d\mid n} \varphi(d) = n \]

证明:令 $S_d$ 为与 $d$ 互质的正整数的集合,即 $S_d = \{ x \in \mathbb{Z}^+ \mid x \le d, \gcd(x, d) = 1 \} $ 。再令 $T_d = \{\frac{x}{d} \mid x \in S_d\}$,则 $T_d$ 是以 $d$ 为分母的最简真分数的集合($T_1=\{ 1 \}$ 除外)。所以有

$$ \bigcup_{d\mid n} T_d = \left\{\frac1n, \frac2n, \dots, \frac{n-1}{n}, \frac{n}{n} \right\} $$

从而有

\[ \sum_{d\mid n} \varphi(d) = n \]

证毕。

费马小定理

若 $p$ 是素数, 对任意整数 $x$ 有 $x^p \equiv x \pmod{p}$.
特别地,若 $p \nmid x$,$x^p \equiv x \pmod{p} \iff x^{p-1} \equiv 1 \pmod{p}$

欧拉函数

$\phi(n)$:与 $n$ 互质且不超过 $n$ 的正整数的个数。
$\phi(n) := |\{k\colon 1\le k\le n, \gcd(k,n)=1\}|$

  • 对于正整数 $a$, $b$($b \mid a$), 满足 $\gcd(a,x)=b$ 的正整数 $x$ 的个数是 $\phi(\frac{a}{b})$.

  • 任意正整数 $n$ 至多有 $1$ 个大于等于 $\sqrt{n}$ 的素因子。

  • 对于非负整数 $a  (a>0), b (0 \le b < a), c$, 满足
    $$
    \begin{cases}
    x \bmod a = b \\
    x \le c
    \end{cases}
    $$
    的非负整数 $x$ 的数目为 (c-b)/a + (c>=b)

分析:
$$x \bmod a=b \quad \Longrightarrow \quad x= ka + b ,  k \ge 0 $$
$$ ka+b \le c \quad \Longrightarrow \quad ka \le c-b \quad \Longrightarrow \quad k \le \dfrac{c-b}{a} $$

注意:
- 当$c \ge b$时, $k$可以取$0$.
- 当$c<b$时, (c-b)/a == 0.
- 当要求$x>0$时, 答案要改成(c-b)/a + (c>=b && b>0)

逆元

设 $a, b, m$ 是三个正整数,若 $ab \equiv 1 \pmod{m}$ 则称 $a, b$ 互为模 $m$ 下的逆元。
$ab \equiv 1 \pmod{m}$ 等价于存在整数 $k$ 使得 $ ab = km + 1$ 即
$$ab - km = 1$$
换言之,$a$ 在模 $m$ 下的逆元 $b$ 存在等价于不定方程
\begin{equation}
ax + my = 1 \label{Eq:1}
\end{equation}
有解。
而方程 \eqref{Eq:1} 有解的充要条件为 $\gcd(a,m) = 1$;这一论断可由求最大公约数的辗转相除法构造性地证明。

对商取模

设有正整数 $a, b$ 满足 $b\mid a$,求 $ \frac{a}{b}\bmod p$,$p$ 是个素数。
解法:先求出 $a,b$ 中 $p$ 的幂次,设 $a = \alpha p^{i}$,$b=\beta p^{j}$,显然有 $i\ge j$ 。
考虑 $i=j$ 的情形,此时有 $\frac{a}{b} = \frac{\alpha}{\beta}$ ;又 $\gcd(\beta, p) = 1$,故 $\beta$ 在模 $p$ 下的逆元存在。

Wilson's theorem

Let $p$ be an integer greater than one. $p$ is prime if and only if $(p-1)! = -1 \pmod{p}$.

This beautiful result is of mostly theoretical value because it is relatively difficult to calculate $(p-1)!$. In contrast, it is easy to calculate $ a^{p-1}$, so elementary primality tests are built using Fermat's Little Theorem rather than Wilson's.

证明:对 $p$ 用数学归纳法。易证 $p = 2, 3, 4$ 时命题成立。设 $p>4$,若 $p$ 是合数,则有 $\gcd(p, (p-1)!) = p$ 。从而 $(p-1)! = 0 \ne -1 \pmod{p}$ 。

为何 $\gcd(p, (p-1)!) = p$?
若存在 $1< a < b < p$ 使得 $p = ab$ 则结论显然成立;否则有 $p = q^2$,$q$ 是素数且 $q>2$ ,故 $q < 2q < p$, 结论亦成立。


$p$ 是合数时的另一个证明
反证法。假设 $(p-1)! = -1 \pmod{p}$ 。
由于 $p$ 是合数,在 $2$ 到 $p-2$ 之间必有一个数 $d$ 是 $p$ 的因子。从而有
$$(p-1)! = -1 \pmod{p} \Longrightarrow (p-1)! = -1 \pmod{d}$$
(注:之前我对这个式子不敏感,这是因为我对【同余】这个概念理解得不够深刻。)
而这与 $(p-1)! = 0 \pmod{d}$ 相矛盾,因为 $0 = -1 \pmod{d}$ 不可能。


若 $p$ 是质数,考虑 $1$ 到 $p-1$ 中的每个数 $a$ 在模 $p$ 下的逆元 $a^{-1}$。显然 $a$ 的逆元在模 $p$ 下唯一,且 $ a^{-1} = b^{-1} \iff a = b$ 。另外,只有在 $a=1$ 或 $a = p-1$ 时才有 $a = a^{-1} $ 。将 $ 2, 3, \dots, p-1, p-2$ 按 $a$ 和 $a^{-1}$ 两两配对,有
$$
\prod_{a=2}^{p-2} a = 1 \pmod{p}
$$
从而有
$$(p-1)! \equiv p-1 \pmod{p}$$

为何只有在 $a=1$ 或 $a = p-1$ 时才有 $a = a^{-1} $?
$a^2 = 1 \pmod{p} \iff a^2 -1 = 0 \pmod{p} \iff (a-1)(a+1) = 0 \pmod{p}$
$\iff a = 1\pmod{p}$ 或 $a=-1\pmod{p}$

计算 $n! \bmod p$

https://mathoverflow.net/a/119237

转载于:https://www.cnblogs.com/Patt/p/5853603.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值