题目链接:http://acm.uestc.edu.cn/#/problem/show/1059
普通线段树+离散化,关键是……离散化后建树和查询都要按照基本法!!!RE了不知道多少次………………我真是个沙茶……
1 /* 2 ━━━━━┒ギリギリ♂ eye! 3 ┓┏┓┏┓┃キリキリ♂ mind! 4 ┛┗┛┗┛┃\○/ 5 ┓┏┓┏┓┃ / 6 ┛┗┛┗┛┃ノ) 7 ┓┏┓┏┓┃ 8 ┛┗┛┗┛┃ 9 ┓┏┓┏┓┃ 10 ┛┗┛┗┛┃ 11 ┓┏┓┏┓┃ 12 ┛┗┛┗┛┃ 13 ┓┏┓┏┓┃ 14 ┃┃┃┃┃┃ 15 ┻┻┻┻┻┻ 16 */ 17 #include <algorithm> 18 #include <iostream> 19 #include <iomanip> 20 #include <cstring> 21 #include <climits> 22 #include <complex> 23 #include <fstream> 24 #include <cassert> 25 #include <cstdio> 26 #include <bitset> 27 #include <vector> 28 #include <deque> 29 #include <queue> 30 #include <stack> 31 #include <ctime> 32 #include <set> 33 #include <map> 34 #include <cmath> 35 36 using namespace std; 37 38 #define fr first 39 #define sc second 40 #define cl clear 41 #define BUG puts("here!!!") 42 #define W(a) while(a--) 43 #define pb(a) push_back(a) 44 #define Rint(a) scanf("%d", &a) 45 #define Rll(a) scanf("%lld", &a) 46 #define Rs(a) scanf("%s", a) 47 #define Cin(a) cin >> a 48 #define FRead() freopen("in", "r", stdin) 49 #define FWrite() freopen("out", "w", stdout) 50 #define Rep(i, len) for(LL i = 0; i < (len); i++) 51 #define For(i, a, len) for(LL i = (a); i < (len); i++) 52 #define Cls(a) memset((a), 0, sizeof(a)) 53 #define Clr(a, x) memset((a), (x), sizeof(a)) 54 #define Full(a) memset((a), 0x7f7f, sizeof(a)) 55 #define lrt rt << 1 56 #define rrt rt << 1 | 1 57 typedef long long LL; 58 59 const int maxn = 800010; 60 LL sum[maxn<<2]; 61 LL add[maxn<<2]; 62 int n, m; 63 int hcnt; 64 LL h[maxn]; 65 LL cmd[maxn], a[maxn], b[maxn], c[maxn]; 66 67 void pushUP(int rt) { 68 sum[rt] = sum[lrt] + sum[rrt]; 69 } 70 71 void pushDOWN(int rt, int m) { 72 if(add[rt]) { 73 add[lrt] += add[rt]; 74 add[rrt] += add[rt]; 75 sum[lrt] += (m - (m >> 1)) * add[rt]; 76 sum[rrt] += (m >> 1) * add[rt]; 77 add[rt] = 0; 78 } 79 } 80 81 void build(int l, int r, int rt) { 82 add[rt] = sum[rt] = 0; 83 if(l == r) return; 84 int m = (l + r) >> 1; 85 build(l, m, lrt); 86 build(m+1, r, rrt); 87 pushUP(rt); 88 } 89 90 void update(int L, int R, int x, int l, int r, int rt) { 91 if(l >= L && R >= r) { 92 add[rt] += x; 93 sum[rt] += (r - l + 1) * x; 94 return; 95 } 96 pushDOWN(rt, r-l+1); 97 int m = (l + r) >> 1; 98 if(m >= L) update(L, R, x, l, m, lrt); 99 if(m < R) update(L, R, x, m+1, r, rrt); 100 pushUP(rt); 101 } 102 103 LL query(int p, int l, int r, int rt) { 104 if(l == r && p == l) return sum[rt]; 105 pushDOWN(rt, r-l+1); 106 int m = (l + r) >> 1; 107 if(p <= m) { 108 LL ret = query(p, l, m, lrt); 109 pushUP(rt); 110 return ret; 111 } 112 else { 113 LL ret = query(p, m+1, r, rrt); 114 pushUP(rt); 115 return ret; 116 } 117 } 118 119 int getid(int x) { 120 return lower_bound(h, h+hcnt, x) - h + 1; 121 } 122 123 int main() { 124 // FRead(); 125 while(~Rint(n) && ~Rint(m)) { 126 hcnt = 0; 127 Rep(i, m) { 128 Rint(cmd[i]); 129 if(cmd[i] == 0) { 130 Rll(a[i]); Rll(b[i]); Rll(c[i]); 131 h[hcnt++] = a[i]; h[hcnt++] = b[i]; 132 } 133 if(cmd[i] == 1) { 134 Rll(a[i]); 135 h[hcnt++] = a[i]; 136 } 137 } 138 sort(h, h+hcnt); hcnt = unique(h, h+hcnt) - h; 139 build(1, hcnt, 1); 140 Rep(i, m) { 141 if(cmd[i] == 0) update(getid(a[i]), getid(b[i]), c[i], 1, hcnt, 1); 142 if(cmd[i] == 1) printf("%lld\n", query(getid(a[i]), 1, hcnt, 1)); 143 } 144 } 145 return 0; 146 }