LeetCode 621. Task Scheduler

方法一:Priority Queue

由于相同的间隔至少为n,所以可以把 n+1 看作一组。利用greedy的思想,每次按照剩余的frequency来填充当前 n+1 个time slot。注意需要一个临时的数组记录新的frequency,等 n+1 个time slot分配完以后再放入优先队列中。

这种方法的本质就是利用greedy做simulation。

class Solution {
public:
    int leastInterval(vector<char>& tasks, int n) {
        priority_queue<int> q; // frequency of remaining tasks
        unordered_map<char,int> count;
        for (char task:tasks) ++count[task];
        for (auto x:count) q.push(x.second);
        
        int res=0;
        while (!q.empty()){
            // assign to n+1 slots according to frequency
            int slots=n+1;
            vector<int> new_freq;
            while (slots){
                if (q.empty()){
                    if (new_freq.size()==0)
                        return res;
                    else{
                        res += slots; // we need insert idles
                        break;
                    }
                }else{
                    int cur=q.top(); q.pop();
                    if (cur-1>0) new_freq.push_back(cur-1);
                    --slots; ++res;
                }
            }
            for (auto x:new_freq) q.push(x);
        }
        return res;
    }
};

 

方法二:Calculating Idle Slots

同样是利用greedy的方法,但是计算idle slot。如图所示,最后一行一定没有空的slot。可能是idle的地方只可能是 (max_count-1)*n [每行第一个一定有task,否则这一行就不存在了]。然后我们要找到有多少需要allocate的task。对于每种task,如果其frequency和最大frequency一样,由于最后一行我们没有计算在内,所以要少一个slot。别的比最大frequency小的task,我们直接减去即可。

如果最后得到的idle slot结果为负,就当做0处理。

class Solution {
public:
    int leastInterval(vector<char>& tasks, int n) {
        vector<int> count(26,0);
        for (char task:tasks) ++count[task-'A'];
        sort(count.begin(),count.end());
        int max_freq=count[25];
        int idle=(max_freq-1)*n;
        for (int i=0;i<=24;++i){
            int freq=count[i];
            if (freq==max_freq) idle-=(max_freq-1);
            else idle-= freq;
        }
        return tasks.size() + (idle>0?idle:0);
    }
};

 

Reference

https://leetcode.com/problems/task-scheduler/solution/

转载于:https://www.cnblogs.com/hankunyan/p/11301962.html

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值