codeforces1084A
没链接.......。
题目: The Fair Nut lives in n story house. ai people live on the i-th floor of the house. Every person uses elevator twice a day: to get from the floor where he/she lives to the ground (first) floor and to get from the first floor to the floor where he/she lives, when he/she comes back home in the evening.
It was decided that elevator, when it is not used, will stay on the x-th floor, but x hasn't been chosen yet. When a person needs to get from floor a to floor b, elevator follows the simple algorithm:
Moves from the x-th floor (initially it stays on the x-th floor) to the a-th and takes the passenger.
Moves from the a-th floor to the b-th floor and lets out the passenger (if a equals b, elevator just opens and closes the doors, but still comes to the floor from the x-th floor).
Moves from the b-th floor back to the x-th.
The elevator never transposes more than one person and always goes back to the floor x before transposing a next passenger. The elevator spends one unit of electricity to move between neighboring floors. So moving from the a-th floor to the b-th floor requires |a−b| units of electricity.
Your task is to help Nut to find the minimum number of electricity units, that it would be enough for one day, by choosing an optimal the x-th floor. Don't forget than elevator initially stays on the x-th floor.
Input
The first line contains one integer n (1≤n≤100) — the number of floors.
The second line contains n integers a1,a2,…,an (0≤ai≤100) — the number of people on each floor.
Output
In a single line, print the answer to the problem — the minimum number of electricity units.
Examples
Input
3
0 2 1
Output
16
Input
2
1 1
Output
4
Note
In the first example, the answer can be achieved by choosing the second floor as the x-th floor. Each person from the second floor (there are two of them) would spend 4 units of electricity per day (2 to get down and 2 to get up), and one person from the third would spend 8 units of electricity per day (4 to get down and 4 to get up). 4⋅2+8⋅1=16.
In the second example, the answer can be achieved by choosing the first floor as the x-th floor.
It was decided that elevator, when it is not used, will stay on the x-th floor, but x hasn't been chosen yet. When a person needs to get from floor a to floor b, elevator follows the simple algorithm:
Moves from the x-th floor (initially it stays on the x-th floor) to the a-th and takes the passenger.
Moves from the a-th floor to the b-th floor and lets out the passenger (if a equals b, elevator just opens and closes the doors, but still comes to the floor from the x-th floor).
Moves from the b-th floor back to the x-th.
The elevator never transposes more than one person and always goes back to the floor x before transposing a next passenger. The elevator spends one unit of electricity to move between neighboring floors. So moving from the a-th floor to the b-th floor requires |a−b| units of electricity.
Your task is to help Nut to find the minimum number of electricity units, that it would be enough for one day, by choosing an optimal the x-th floor. Don't forget than elevator initially stays on the x-th floor.
Input
The first line contains one integer n (1≤n≤100) — the number of floors.
The second line contains n integers a1,a2,…,an (0≤ai≤100) — the number of people on each floor.
Output
In a single line, print the answer to the problem — the minimum number of electricity units.
Examples
Input
3
0 2 1
Output
16
Input
2
1 1
Output
4
Note
In the first example, the answer can be achieved by choosing the second floor as the x-th floor. Each person from the second floor (there are two of them) would spend 4 units of electricity per day (2 to get down and 2 to get up), and one person from the third would spend 8 units of electricity per day (4 to get down and 4 to get up). 4⋅2+8⋅1=16.
In the second example, the answer can be achieved by choosing the first floor as the x-th floor.
题意:
一个电梯一次载一个人,这个电梯在一开始或者载完一个人后会回到一个固定的楼层,
题目的输入输出是输入楼层数,然后输入每一层的人数,输出是输出一个最优解,这个
最优解是这个电梯的最小耗电量,A层到B层的耗电量是abs(A-B),由于一开始这个
固定楼层不确定,所以让你找出那个固定那个楼层时耗电量最小。
题解:
没啥好想的,数据比较小,直接暴力。
代码:
#include<stdio.h>
#include<math.h>
long long n,sum;
long long a[110];
int main()
{
while(scanf("%lld",&n)!=EOF)
{
long long ans=0x3f3f3f3f;
for(long long i=1;i<=n;i++)
{
scanf("%lld",&a[i]);
}
for(long long i=1;i<=n;i++)
{
sum=0;
for(long long j=1;j<=n;j++)
{
sum+=a[j]*2*(abs(i-j)+abs(j-1)+abs(1-i));//该层的人数*每天上下两次*运一个人的耗电量。
}
if(sum<ans)//更新答案。
ans=sum;
}
printf("%lld\n",ans);
}
}
#include<math.h>
long long n,sum;
long long a[110];
int main()
{
while(scanf("%lld",&n)!=EOF)
{
long long ans=0x3f3f3f3f;
for(long long i=1;i<=n;i++)
{
scanf("%lld",&a[i]);
}
for(long long i=1;i<=n;i++)
{
sum=0;
for(long long j=1;j<=n;j++)
{
sum+=a[j]*2*(abs(i-j)+abs(j-1)+abs(1-i));//该层的人数*每天上下两次*运一个人的耗电量。
}
if(sum<ans)//更新答案。
ans=sum;
}
printf("%lld\n",ans);
}
}