任意四面体的外接球的半径(克列尔(A.L.Crelle)公式)

【问题提出】克列尔(A.L.Crelle)公式

对任意四面体$ABCD$,其体积$V$和外接球半径$R$满足$$6RV=\sqrt{p(p-aa_1)(p-bb_1)(p-cc_1)}.$$

其中$p=\frac 12(aa_1+bb_1+cc_1)$,$a,a_1,b,b_1,c,c_1$分别为四面体的三组对棱的长.

 

允许我先跑个题且在正文里介绍下近代欧氏几何学中的布洛卡点. 克列尔(1780-1855)法国数学家和数学教育家,布洛卡点早在1816年就被克列尔首次发现,1875年被法国军官布洛卡(Brocard)重新发现此特殊点并用他的名字命名,这才引起莱莫恩,图克等一大批数学家兴趣,一时形成了一股研究“三角形几何”的热潮.

 

【布洛卡点】 2013年全国卷I第17题的背景是也

点$P$是$\triangle ABC$内部一点,若$\angle PAB=\angle PBC=\angle PCA=\alpha$,则称$\alpha$为布洛卡角,点$P$为布洛卡点.

这里说个特殊情况,当$\alpha=30^\circ$时,则此$\triangle ABC$为正三角形,这是个看似简单实难的几何题.

 

【简单引理】四面体的体积公式之一

$V=\frac 2{3a}\cdot S_1S_2\cdot \sin \theta$,其中,$S_1,S_2$为以$a$为公共棱的两个面的面积,$\theta$为这两个面所成的二面角.

此式的证明极易,只需要将$V=\frac 13Sh$中的$h$用这两个面的夹角表示即可.

 

【问题解决】 辅助线爽心悦目,千锤百炼,叹为观止

证明:如图所示,过$A$作四面体外接球的切面$\alpha$,过$D$作平面$ABC$平行平面$\beta$.

平面$\alpha$,平面$\beta$,平面$ ABD$相交于点$E$;平面$\alpha$,平面$\beta$,平面$ ACD$相交于点$F$.

1299375-20180201092429093-839994998.png

平面$\beta \sslash $平面$ABC$,平面$ACD$与这两面均相交,由平面平行性质可知$AC\sslash DF$,需要提醒的是,$AC$与$DF$是否相等无法判断.

于是$\angle ADF=\angle DAC$,由于平面$\alpha$是四面体外接球的切面,所以在平面$ACD$中,$AF$是$\odot ACD$在点$A$的切线,由弦切角定理,知$\angle FAD=\angle ACD$,所以$$\triangle FAD \sim \triangle DCA\Rightarrow \frac{AF}a=\frac cb\Rightarrow AF=\frac {ac}b.$$

同理由$AB\sslash DE$,有$\angle ADE=\angle DAB$在平面$ABD$中$AE$为$\odot ABD$的切线,有$\angle EAD=\angle ABD$,所以$$\triangle EAD \sim \triangle DBA\Rightarrow \frac{AE}{b_1}=\frac c{a_1}\Rightarrow AE=\frac {b_1c}{a_1}.$$

下面求$EF$的长.

同样的方法,如图,作平面$\gamma  \sslash$平面$ACD$,这样三面相交得到点$G$,$H$.

同样可得$$AG=\frac {a_1c_1}b,AH=\frac{a_1b_1}c.$$

平面$\alpha  \cap$平面$ABC=AG$,平面$\alpha  \cap$平面$\beta=EF$,平面$ABC\sslash $平面$\beta$,于是$AG\sslash EF$,同理知$GH\sslash AF$,而$H,A,E$在一条线(平面$\alpha$与平面$ABD$的交线)上,所以$$\triangle EFA \sim \triangle AGH\Rightarrow \frac{EF}{AG}=\frac {AE}{AH}\Rightarrow EF=\frac {c^2c_1}{a_1b}.$$

将$\triangle AEF$放缩$\dfrac{a_1b}{c}$倍,就得到三边为$aa_1$,$bb_1$,$cc_1$的三角形,由海伦公式,将此三角形的面积记为$$S=\sqrt{p(p-aa_1)(p-bb_1)(p-cc_1)}.$$

设点$D$在四面体$ABCD$外接球过$A$的直径上的投影为$D'$,则$$h=AD'=\frac{AD^2}{2R}=\frac {c^2}{2R}.$$

这样一来,$$V_1=V_{D-AEF}=\frac13 S \left(\frac c{a_1b}\right)^2 h=\frac{c^4}{a_1^2b^2}\cdot \frac{S}{6R}.$$

另一方面,四面体$ADEF$与四面体$ABCD$的体积比为

$$\frac{V_1}{V}=\frac{S_{\triangle ADF}\cdot S_{\triangle ADE}}{S_{\triangle ACD}\cdot S_{\triangle ABD}}$$

$$=\frac{S_{\triangle ADF}}{S_{\triangle ACD}}\cdot \frac{S_{\triangle ADE}}{S_{\triangle ABD}}$$

$$=\left(\frac{AF}a\right)^2\cdot \left(\frac{AE}{b_1}\right)^2$$

$$=\frac {c^2}{b^2}\cdot\frac {c^2}{a_1^2}$$

$$=\frac {c^4}{a_1^2b^2}$$

$$\therefore V_1=\frac {c^4}{a_1^2b^2}\cdot V.$$

从而$$6RV=\sqrt{p(p-aa_1)(p-bb_1)(p-cc_1)}.$$ \qed

 

PS:高考中的热点与难点
PSS:1988年赵光明 、武建沛在《数学教学》发表了“任意四面体外接球半径的计算公式”,从角出发;本文从六条边出发,即 克列尔(A.L.Crelle)公式,参考了唐立华著的《向量与立体几何》;沈文选、张垚、冷岗松著的《奥林匹克数学中的几何问题》

转载于:https://www.cnblogs.com/epii/p/8397287.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值