欧拉的问题:凸多边形划分为三角形的方法数

欧拉的问题:凸多边形划分为三角形的方法数

触摸标题下面一行中“北京 邵勇”后面的蓝字“数学教学研究本公众号内容均由邵勇本人独创。每周推送两到三篇内容上有分量的数学文章,但在行文上力争做到深入浅出。几分钟便可读完,轻松学数学。

今天是5月14日,我们按照规定,给出几道答案等于14的题目。

(一)

一个正七边形有多少条对角线?(7个点之间两两连线,可以连接出7*6/2=21条线段,其中有七条是正七边形的边,那么,剩余线段的数量就是正七边形对角线的数量,请您自己计算。另外,也可以从另一角度来计算对角线的数量:广义的正七边形还包括星状七边形。星状七边形有两种,一种是从任意一个顶点出发,相隔一个顶点依次进行连线,这样,连接七次后,回到出发点,形成下图中红色的星状七边形。第二种也是从任意一个顶点出发,但这次是相隔两个顶点依次进行连线,于是,也是连接七次后回到出发点,连接出下图中绿色星状七边形。红绿两种星状七边形是不同的,互相不会重复或重叠。两种星状七边形的边合在一起,构成全部正七边形的对角线。)

(二)

一个正四边形(正方形)可以有两种方法把它划分成两个三角形:

一个正五边形有下面五种方法把它划分成三角形:

那么,一个正六边形可以有多少种方法把它划分成三角形呢?

下面是几个公式:

(1)欧拉给出的公式(n代表正多边形的边数):

(2)塞格纳(Johann Andreas Segner)的公式(其中规定E2=1):

请您自行验证一下正六边形内划分出三角形的方法共有多少种(n取6时)。上面是对正多边形进行的讨论。其实对凸多边形都是成立的。

转载于:https://www.cnblogs.com/vectors07/p/8053427.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值