数据分析(4):Scipy

科学计算

最小二乘leastsq

# -*- coding: utf-8 -*-
def func(x,p): # p 参数列表
    A,k,theta = p; # 可以一一对应赋值
    return A*np.sin(2*np.pi*k*x+theta) # 可以批量运算
    
def residuals(p,y,x):
    return y-func(x,p)
    
x1: 实验数据
y1: 实验数据
p0: 参数初值

plsq = leastsq(residuals, p0, args=(y1,x1))
print u"拟合参数",plsq[0]

 

非线性方程组求解 from scipy.optimize import fsolve

result = fsolve(f, [1,1,1])
# f为误差函数,[1,1,1]为初值

  可以传入雅可比行列式的方式来提高运算速度,如result=fsolve(f,[1,1,1],fprime=j)

插值 from scipy import interpolate

x0:原始数据
y0:原始数据

x1 = 一串和x0一样的数组
f_linear = interpolate.interpld(x0,y0) # 得到线性插值后的函数
tck = interpolate.splrep(x0,y0) # 根据原始数据算得样条插值的参数
y_spline = interpolate.splev(x1,tck) # 这里x1不再和x0一样
y_linear = f_linear(x1)

  

积分 from scipy import integrate

一重
y, err = integrate.quad(f,-1,1) # f为被积函数,-1 1为区间
二重
y, err = integrate.dblquad(f,lb,ub,gfun,hfun) # gfun,hfun为第二个变量的区间

  

 

转载于:https://www.cnblogs.com/ajmd/p/6084057.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值