【模板】ST表

给定一个长度为 \(N\) 的数列,和 \(M\) 次询问,求出每一次询问的区间\([l,r]\)内数字的最大值。

说明
对于30%的数据,满足: \(1 \leq N, M \leq 10 , 1≤N,M≤10\)
对于70%的数据,满足: \(1 \leq N, M \leq {10}^5 , 1≤N,M≤10^5\)
对于100%的数据,满足: \(1 \leq N \leq {10}^5, 1 \leq M \leq {10}^6, a_i \in [0, {10}^9], 1 \leq l_i \leq r_i \leq N 1≤N≤10^5 ,1≤M≤10^6,a i ∈[0,10^9],1≤l i ≤r i​ ≤N\)

思路

1.\(O(n)\)暴力枚举

左转右转都可以 详情见数据范围

2.线段树\(O(logn)\)

左转右转都可以 详情见数据范围


所以呢,我们需要一个\(O(1)\)的查询效率。

3.区间动规

记录\(f(i,j)\)为区间\([i,j]\)的最大值。

转移\(f(i,j)=max(f(i,j−1),a[j])\)

然而这需要\(O(n^2)\)的预处理。

左转右转都可以 详情见数据范围

4.ST表

其实这是个经典的ST表模板。静态区间最值。

和LCA一样,都用到了倍增的思路。

我们令\(f(i,j)\) 为从\(a[i]\)开始的,连续 \(2^j\)个数的最大值

于是我们有\(f(i,0)=a[i]\)(多显然啊qwq)

于是我们还有\(f(i,j)=max(f(i,j-1),f(i+2^{j-1},j-1))\)

我太懒了不想证怎么办(画个图膜你一下就行了)

对于查询,根据\(max\) 的性质,我们可以把区间拆成两个相重叠的区间。

于是按照预处理来推一下就得到,查询区间\([left,right]\)

\(len=log2(right-left+1)\)
\(max(f[left][len-1],f[right-(1<<(len-1))+1][len-1]))\)

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#define MAXN 100005
#define len lg[right-left+1]
#define scan(a) scanf("%d",&a)
#define print(a) printf("%d",a)
#define printn(a) printf("%d\n",a)
#define printwn(a) printf("%d ",a)
#define endl printf("\n")
using namespace std;
int n,m,a[MAXN],lg[MAXN],maxx[MAXN][25];

int main()
{
    scan(n); scan(m);
    for (int i=1;i<=n;i++)
    {
        lg[i]=lg[i/2]+1;
    }
    for (int i=1;i<=n;i++)
    {
        scan(a[i]);
    }
    for (int i=1;i<=n;i++)
    {
        maxx[i][0]=a[i];
    }
    for (int i=1;i<=lg[n];i++)
    {
        for (int j=1;j+(1<<i)-1<=n;j++)
        {
            maxx[j][i]=max(maxx[j][i-1],maxx[j+(1<<(i-1))][i-1]);
        }
    }
    int left,right;
    for (int i=1;i<=m;i++)
    {
        scan(left); scan(right);
        printn(max(maxx[left][len-1],maxx[right-(1<<(len-1))+1][len-1]));
    }
    return 0;
}

转载于:https://www.cnblogs.com/Kan-kiz/p/10697425.html

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
ST是一种用于快速查询区间最值的数据结构。它的核心思想是对区间进行预处理,将区间内的最值信息存储在一个二维数组中,然后利用这个数组进行查询。以下是一个最大值ST模板代码: ``` const int MAXN = 100005; const int MAXLOGN = 20; int a[MAXN]; int st[MAXN][MAXLOGN]; void init(int n) { for (int i = 1; i <= n; i++) { st[i][0] = a[i]; } for (int j = 1; (1 << j) <= n; j++) { for (int i = 1; i + (1 << j) - 1 <= n; i++) { st[i][j] = max(st[i][j-1], st[i+(1<<(j-1))][j-1]); } } } int query(int l, int r) { int k = log2(r-l+1); // k为最大的2的幂方,使得2^k <= r-l+1 return max(st[l][k], st[r-(1<<k)+1][k]); } int main() { int n, q; cin >> n >> q; for (int i = 1; i <= n; i++) { cin >> a[i]; } init(n); while (q--) { int l, r; cin >> l >> r; cout << query(l, r) << endl; } return 0; } ``` 这段代码中,init函数用于初始化ST,query函数用于查询区间最大值。具体来说,init函数的实现如下: 1. 将a[i]的值存储到st[i][0]中,区间[i,i]的最大值为a[i]。 2. 对于每个j,计算区间[i,i+2^j-1]的最大值,存储在st[i][j]中。可以发现,区间[i,i+2^j-1]可以拆分为两个长度为2^(j-1)的子区间,即区间[i,i+2^(j-1)-1]和区间[i+2^(j-1),i+2^j-1]。因此,区间[i,i+2^j-1]的最大值等于区间[i,i+2^(j-1)-1]的最大值区间[i+2^(j-1),i+2^j-1]的最大值中较大的一个。 query函数的实现也比较简单,首先计算k,然后查询区间[l,r]的最大值,等价于查询区间[l,l+2^k-1]的最大值区间[r-2^k+1,r]的最大值中较大的一个。 求最小值的ST模板代码与求最大值的类似,只需要将max改为min即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值