原生js

一、节点操作
获取节点
document.getElementById();  通过id获取节点,获取到单个节点
document.getElementsByClassName();  通过class获取节点,获取到节点集合
document.getElementsByTagName();  通过标签名获取节点,获取到节点集合
document.getElementsByName();  通过name名获取节点,获取到节点集合
document.forms();  通过form标签名获取节点,获取到节点集合
document.querySelector();  通过选择器获取节点(class,id,tag…),获取到第一个节点
document.querySelectorAll();  通过选择器获取节点(class,id,tag…),获取到所有节点
 
获取父节点
element.parentNode  获取父节点
element.parentElement  获取父节点
 
获取子节点
element.children    获取所有子节点(都是元素节点)
element.childNodes    获取所有子节点(包含文本节点等)
element.firstElementChild/element.lastElementChild    获取第一个/最后一个子节点(都是元素节点)
element.firstChild/element.lastChild    获取第一个/最后一个子节点(包含文本节点等)
 
获取兄弟节点
element.previousSibling/element.nextSibling    获取前一个/后一个节点(包含文本节点等)
element.previousElementSibling/element.nextElementSibling    获取前一个/后一个节点(都是元素节点)
 
节点操作
document.createElement();    创建节点
parent.removeChild(element);    删除节点
element.cloneNode(true);    克隆节点
parent.appendChild(newElement);    后插入节点
parent.insertBefore(newElement,targetElement);    前插入节点
 
二、样式操作
style
element.style.color    设置/获取单个样式
element.style.cssText    设置/获取多个样式
 
class
element.classList.add()    增加类
element.classList.remove()    删除类
element.classList.toggle()    切换类
element.classList.contains()    是否包含类
 
三、属性操作
element.setAttribute(name,value);    设置属性
element.getAttribute(name);    获取属性
element.removeAttribute(name);    删除属性
element.dataset.name    设置/获取data属性
 
四、html操作
element.innerHTML    设置/获取html(包含html标签)
element.innerText/element.textContent    设置/获取文本(只包含文本标签)
 

转载于:https://www.cnblogs.com/only-lh/p/8109101.html

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值