Numpy数组索引为-1和None

numpy的数组操作方便,可以用:来切片,用布尔数组或者布尔表达式来查找符合条件的数据,也可以用数组作为另一个数组的索引来查找指定的数据。但有时也会见到数组索引为-1和None。两者的用法如下:

1.-1指定维度上的最后一个。例如shape为(3,3)的数组data,data[2,-1]等同于data[2,2];data[-1]相当于data[2];data[1,1:-1]等同于data[1,1:2]

2.None并不指代数组中的某一维,None用于改变数组的维度。例如data的shape为(3,3),则data[:,None]的shape是(3,1,3),data(:,:,None)的shape是(3,3,1)。容易看出None就是在指定位置添加一维,且这个维度的数目是1。这样数据总数并不会变化,只是数据维度发生变化。

 

转载于:https://www.cnblogs.com/sgdd123/p/7603004.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值