列表生成式
有个需求,看列表[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],我要求你把列表里的每个值加1
a = [i+1 for i in range(10)] a [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
上面的写法就叫做列表生成
一.为什么要有生成器
秉着先问为什么,再问怎么做的原则,我们来看看为什么python会添加生成器这个功能。
python在数据科学领域可以说是很火。我想有一部分的功劳就是它的生成器了吧。
我们知道我们可以用列表储存数据,可是当我们的数据特别大的时候建立一个列表的储存数据就会很占内存的。这时生成器就派上用场了。它可以说是一个不怎么占计算机资源的一种方法。
二.简单的生成器
我们可以用列表推导(生成式)来初始化一个列表:
list5 = [x for x in range(5)]
print(list5) #output:[0, 1, 2, 3, 4]
1
2
我们用类似的方式来生成一个生成器,只不过我们这次将上面的[ ]换成( ):
gen = (x for x in range(5))
print(gen)
#output: <generator object <genexpr> at 0x0000000000AA20F8>
1
2
3
看到上面print(gen) 并不是直接输出结果,而是告诉我们这是一个生成器。那么我们要怎么调用这个gen呢。
有两种方式:
第一种:
for item in gen:
print(item)
#output:
0
1
2
3
4
1
2
3
4
5
6
7
8
第二种:
print(next(gen))#output:0
print(next(gen))#output:1
print(next(gen))#output:2
print(next(gen))#output:3
print(next(gen))#output:4
print(next(gen))#output:Traceback (most recent call last):StopIteration
1
2
3
4
5
6
好了。现在可以考虑下背后的原理是什么了。
从第一个用for的调用方式我们可以知道生成器是可迭代的。更准确的说法是他就是个迭代器。
我们可以验证一下:
from collections import Iterable, Iterator
print(isinstance(gen, Iterable))#output:True
print(isinstance(gen, Iterator))#output:True
1
2
3
str,list,tuple,dict,set这些都是可迭代的,就是可用for来访问里面的每一个元素。但他们并不是迭代器。
什么是迭代器?
我们可以理解为我们平时做一件事的步骤。
比如我们泡茶:
首先,得去煮水。
然后,拿出茶具,和茶叶
接着,水开了,就开始泡茶
最后,就是品茶了。
假如我们定义了一个泡茶的函数(迭代器),然后将泡茶步骤的方法封装进这个函数。每一次调用这个函数就返回一个步骤,并保存好当前执行到哪个状态。如果中途有事,比如我们执行到步骤二的时候突然去接了个电话,回来调用这个函数就会得到步骤三(水开了,就开始泡茶),也就是状态保存好了。我们可以执行这个泡茶函数直到调用完所有步骤为止。
定义一个方法,这个方法是一步步执行的,并能保存状态,这就是迭代器。
生成器使用总结:
1.生成器的好处是可以一边循环一边进行计算,不用一下子就生成一个很大的集合,占用内存空间。生成器的使用节省内存空间。
2.生成器保存的是算法,而列表保存的计算后的内容,所以同样内容的话生成器占用内存小,而列表占用内存大。每次调用 next(G) ,就计算出 G 的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出 StopIteration 的异常。
3.使用for 循环来遍历生成器内容,因为生成器也是可迭代对象。通过 for 循环来迭代它,不需要关心 StopIteration 异常。但是用for循环调用generator时,得不到generator的return语句的返回值。如果想要拿到返回值,必须用next()方法,且捕获StopIteration错误,返回值包含在StopIteration的value中。
4.在 Python 中,使用了 yield 的函数都可被称为生成器(generator)。生成器是一个返回迭代器的函数,只能用于迭代操作。更简单点理解生成器就是一个迭代器。
5.一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,保存当前所有的运行信息,并返回一个迭代值,下次执行next() 方法时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。生成器不仅“记住”了它数据状态;生成器还“记住”了它在流控制构造中的位置。
#第一种方法,通过类似于列表生成式的 #方式来生成,生成式 # g=(x * x for x in range(1,6)) # for i in g: # print(i) #第二种方式,通过yield方式,生成 #fun已经不是一个普通函数了,而是一个生成器 # def fun(start,end): # for x in range(start,end): # yield x * x # f=fun(1,6) # for i in f: # print(i) #yield在函数中使用,执行流程 #在执行过程中,遇到这个yield就会中断执行,并返回相关数据后面的语句不会执行 #下次再调用这个函数的时候就会从中断的位置继续执行,后面的语句 #就会被执行,我们使用next调试查看一下 def fun1(start,end): for x in range(start,end): yield x * x print('hello') f1=fun1(1,10) print(f1) print(next(f1)) #从上次yield中断结束,再执行打印hello print(next(f1))
生成器
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]
改成()
,就创建了一个generator:
L = [x * x for x in range(10)] L [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] g = (x * x for x in range(10)) g <generator object <genexpr> at 0x1022ef630>
创建L
和g
的区别仅在于最外层的[]
和()
,L
是一个list,而g
是一个generator。
我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?
如果要一个一个打印出来,可以通过next()
函数获得generator的下一个返回值:
>>>
next
(g)
0
>>>
next
(g)
1
>>>
next
(g)
4
>>>
next
(g)
9
>>>
next
(g)
16
>>>
next
(g)
25
>>>
next
(g)
36
>>>
next
(g)
49
>>>
next
(g)
64
>>>
next
(g)
81
>>>
next
(g)
Traceback (most recent call last):
File
"<stdin>"
, line
1
,
in
<module>
StopIteration
我们讲过,generator保存的是算法,每次调用next(g)
,就计算出g
的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration
的错误。
当然,上面这种不断调用next(g)
实在是太变态了,正确的方法是使用for
循环,因为generator也是可迭代对象:
g = (x * x for x in range(10)) for n in g: print(n) 0 1 4 9 16 25 36 49 64 81
所以,我们创建了一个generator后,基本上永远不会调用next()
,而是通过for
循环来迭代它,并且不需要关心StopIteration
的错误。
generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for
循环无法实现的时候,还可以用函数来实现。
比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:
def fib(max): n, a, b = 0, 0, 1 while n < max: print(b) a, b = b, a + b n = n + 1 return 'done'
注意,赋值语句:
a, b = b, a + b
相当于:
t = (b, a + b) # t是一个tuple a = t[0] b = t[1]
但不必显式写出临时变量t就可以赋值。
上面的函数可以输出斐波那契数列的前N个数:
fib(10) 1 1 2 3 5 8 13 21 34 55 done
仔细观察,可以看出,fib
函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。
也就是说,上面的函数和generator仅一步之遥。要把fib
函数变成generator,只需要把print(b)
改为yield b
就可以了:
def fib(max): n,a,b = 0,0,1 while n < max: #print(b) yield b a,b = b,a+b n += 1 return 'done'
#-*-coding:utf-8-*- def fib(max): n,a,b = 0,0,1 while n < max: #print(b) yield b a,b = b,a+b n += 1 return 'done' for i in fib(100): print (i)
这就是定义generator的另一种方法。如果一个函数定义中包含yield
关键字,那么这个函数就不再是一个普通函数,而是一个generator:
f = fib(6)
f
<generator object fib at 0x104feaaa0>
这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return
语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()
的时候执行,遇到yield
语句返回,再次执行时从上次返回的yield
语句处继续执行。
data = fib(10) print(data) print(data.__next__()) print(data.__next__()) print("干点别的事") print(data.__next__()) print(data.__next__()) print(data.__next__()) print(data.__next__()) print(data.__next__()) #输出 <generator object fib at 0x101be02b0> 1 干点别的事 3 8
在上面fib
的例子,我们在循环过程中不断调用yield
,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。
同样的,把函数改成generator后,我们基本上从来不会用next()
来获取下一个返回值,而是直接使用for
循环来迭代:
for n in fib(6): ... print(n) ... 1 3 8
但是用for
循环调用generator时,发现拿不到generator的return
语句的返回值。如果想要拿到返回值,必须捕获StopIteration
错误,返回值包含在StopIteration
的value
中:
g = fib(6) while True: ... try: ... x = next(g) ... print('g:', x) ... except StopIteration as e: ... print('Generator return value:', e.value) ... break ... g: 1 g: 1 g: 2 g: 3 g: 5 g: 8 Generator return value: done
迭代器
我们已经知道,可以直接作用于for
循环的数据类型有以下几种:
一类是集合数据类型,如list
、tuple
、dict
、set
、str
等;
一类是generator
,包括生成器和带yield
的generator function。
这些可以直接作用于for
循环的对象统称为可迭代对象:Iterable
。
可以使用isinstance()
判断一个对象是否是Iterable
对象:
from collections import Iterable isinstance([], Iterable) True isinstance({}, Iterable) True isinstance('abc', Iterable) True isinstance((x for x in range(10)), Iterable) True isinstance(100, Iterable) False
而生成器不但可以作用于for
循环,还可以被next()
函数不断调用并返回下一个值,直到最后抛出StopIteration
错误表示无法继续返回下一个值了。
*可以被next()
函数调用并不断返回下一个值的对象称为迭代器:Iterator
。
可以使用isinstance()
判断一个对象是否是Iterator
对象:
from collections import Iterator isinstance((x for x in range(10)), Iterator) True isinstance([], Iterator) False isinstance({}, Iterator) False isinstance('abc', Iterator) False
生成器都是Iterator
对象,但list
、dict
、str
虽然是Iterable
,却不是Iterator
。
把list
、dict
、str
等Iterable
变成Iterator
可以使用iter()
函数:
isinstance(iter([]), Iterator) True isinstance(iter('abc'), Iterator) True
你可能会问,为什么list
、dict
、str
等数据类型不是Iterator
?
这是因为Python的Iterator
对象表示的是一个数据流,Iterator对象可以被next()
函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration
错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()
函数实现按需计算下一个数据,所以Iterator
的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator
甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。
小结
凡是可作用于for
循环的对象都是Iterable
类型;
凡是可作用于next()
函数的对象都是Iterator
类型,它们表示一个惰性计算的序列;
集合数据类型如list
、dict
、str
等是Iterable
但不是Iterator
,不过可以通过iter()
函数获得一个Iterator
对象。
Python的for
循环本质上就是通过不断调用next()
函数实现的,例如:
for x in [1, 2, 3, 4, 5]: pass
实际上完全等价于:
# 首先获得Iterator对象: it = iter([1, 2, 3, 4, 5]) # 循环: while True: try: # 获得下一个值: x = next(it) except StopIteration: # 遇到StopIteration就退出循环 break