浅谈范德蒙德(Vandermonde)方阵的逆矩阵与拉格朗日(Lagrange)插值的关系以及快速傅里叶变换(FFT)中IDFT的原理
标签: 行列式 矩阵 线性代数 FFT 拉格朗日插值
只要稍微看过一点线性代数的应该都知道范德蒙德行列式。
\[V(x_0,x_1,\cdots ,x_{n-1})=\begin{bmatrix} {1}&{1}&{\cdots}&{1}\\ {x_{0}}&{x_{1}}&{\cdots}&{x_{n-1}}\\ {x_{0}^2}&{x_{1}^2}&{\cdots}&{x_{n-1}^2}\\ {\vdots}&{\vdots}&{}&{\vdots}\\ {x_{0}^{n-1}}&{x_{1}^{n-1}}&{\cdots}&{x_{n-1}^{n-1}}\\ \end{bmatrix} \]
而范德蒙德行列式由于其本身的特殊性,具有通项公式:
\[V(x_0,x_1,\cdots ,x_{n-1})=\prod _{n > i > j \geq 0}(x _{i}-x _{j})\]
我们同样可以把行列式中的项写到矩阵中来,即范德蒙德方阵
\[V=\begin{pmatrix} {1}&{1}&{\cdots}&{1}\\ {x_{0}}&{x_{1}}&{\cdots}&{x_{n-1}}\\ {x_{0}^2}&{x_{1}^2}&{\cdots}&{x_{n-1}^2}\\ {\vdots}&{\vdots}&{}&{\vdots}\\ {x_{0}^{n-1}}&{x_{1}^{n-1}}&{\cdots}&{x_{n-1}^{n-1}}\\ \end{pmatrix}\]
考虑范德蒙德方阵的逆矩阵,我们可以借助伴随矩阵来计算。
对于\(V\)的伴随矩阵\(V^*\)

本文深入探讨了范德蒙德方阵的逆矩阵计算,及其与拉格朗日插值的关系。同时,解释了快速傅里叶变换(FFT)中IDFT的原理,通过分析证明了IDFT矩阵的一种等效形式。
最低0.47元/天 解锁文章

2142

被折叠的 条评论
为什么被折叠?



