UVA796 Critical Links(求桥) 题解

题意:求桥

思路:求桥的条件是:(u,v)是父子边时 low[v]>dfn[u] 

所以我们要解决的问题是怎么判断u,v是父子边(也叫树枝边)。我们在进行dfs的时候,要加入一个fa表示当前进行搜索的点的父节点。v=edge[v].v,如果dfn[v]==0即没访问过,那么肯定是父子边;如果v已经被访问过,我们就要做出筛选,只有v!=fa才进行low[u]=min(low[u],dfn[v]),因为v==fa时,(u,v)变成了返祖边,这时候low[u]被刷新成为fa的dfn,但是low是通过父子边所能找到的最早节点,固要舍去这种情况。

无向连通图的割点、桥

code:

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<queue>
#include<cmath>
#include<string>
#include<map>
#include<stack> 
#include<set>
#include<vector>
#include<iostream>
#include<algorithm>
#include<sstream>
#define ll long long 
const int N=1e5+5;
const ll INF=1e5+5;
using namespace std;
int n,m,cnt,ecnt,num;
int dfn[N],low[N],head[N];
vector<int> g[N];
struct Edge{
	int u,v,next;
}edge[N*10];
struct Ans{
	int u,v;
}ans[N*10];
int cmp(Ans a,Ans b){
	if(a.u<b.u) return 1;
	else if(a.u==b.u && a.v<b.v) return 1;
	return 0;
}
void add(int u,int v){
	edge[num].u=u;
	edge[num].v=v;
	edge[num].next=head[u];	//表头 
	head[u]=num++;
} 

void tarjan(int x,int fa){	//fa是x的父节点 
	dfn[x]=low[x]=++cnt;
	for(int i=head[x];i!=-1;i=edge[i].next){
		int v=edge[i].v;
		if(!dfn[v]){
			tarjan(v,x);
			low[x]=min(low[x],low[v]);
			if(low[v]>dfn[x]){
				int a,b;
				a=x,b=v;
				if(a>b) swap(a,b);
				ans[ecnt].u=a,ans[ecnt].v=b;
				ecnt++;		
			}
		}
		else if(v!=fa){
			low[x]=min(low[x],dfn[v]);
		}
		
	}
}
void init(){ 
	cnt=ecnt=num=0;
	memset(head,-1,sizeof(head));
	memset(dfn,0,sizeof(dfn));
	memset(low,0,sizeof(low));
}
int main(){
	int t,T,a,b,n;
	while(~scanf("%d",&t)){
		init();
		T=t;
		while(T--){
			scanf("%d (%d)",&a,&n);
			while(n--){
				scanf("%d",&b);
				add(a,b);
			}
		}
		for(int i=0;i<t;i++){
			if(!dfn[i]) tarjan(i,i);
		}
		sort(ans,ans+ecnt,cmp);
		cout<<ecnt<<" critical links"<<endl;
		for(int i=0;i<ecnt;i++){
			printf("%d - %d\n",ans[i].u,ans[i].v);
		}
		cout<<endl;
	}
    return 0;
}

这是在加边的时候判断是否重边

code2:

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<queue>
#include<cmath>
#include<string>
#include<map>
#include<stack> 
#include<set>
#include<vector>
#include<iostream>
#include<algorithm>
#include<sstream>
#define ll long long 
const int N=1e5+5;
const ll INF=1e5+5;
using namespace std;
int n,m,cnt,ecnt,num;
int dfn[N],low[N],head[N];
vector<int> g[N];
struct Edge{
	int u,v,next;
	int flag;
}edge[N*10];
struct Ans{
	int u,v;
}ans[N*10];
int cmp(Ans a,Ans b){
	if(a.u<b.u) return 1;
	else if(a.u==b.u && a.v<b.v) return 1;
	return 0;
}
void add(int u,int v){
	for(int i=head[u];i!=-1;i=edge[i].next){
		if(edge[i].v==v){	//说明不是桥 
			edge[i].flag++;
			edge[num].u=u;
			edge[num].v=v;
			edge[num].flag=1;
			edge[num].next=head[u];	//表头 
			head[u]=num++;
			return;
		}
	}
	edge[num].u=u;
	edge[num].v=v;
	edge[num].flag=0;
	edge[num].next=head[u];	//表头 
	head[u]=num++;
} 

void tarjan(int x,int fa){	//fa是x的父节点 
	dfn[x]=low[x]=++cnt;
	for(int i=head[x];i!=-1;i=edge[i].next){
		int v=edge[i].v;
		if(v==fa) continue;
		if(!dfn[v]){
			tarjan(v,x);
			low[x]=min(low[x],low[v]);
			if(low[v]>dfn[x] && edge[i].flag==0){
				int a,b;
				a=x,b=v;
				if(a>b) swap(a,b);
				ans[ecnt].u=a,ans[ecnt].v=b;
				ecnt++;		
			}
		}
		else{
			low[x]=min(low[x],dfn[v]);
		}
		
	}
}
void init(){ 
	cnt=ecnt=num=0;
	memset(head,-1,sizeof(head));
	memset(dfn,0,sizeof(dfn));
	memset(low,0,sizeof(low));
}
int main(){
	int t,T,a,b,n;
	while(~scanf("%d",&t)){
		init();
		T=t;
		while(T--){
			scanf("%d (%d)",&a,&n);
			while(n--){
				scanf("%d",&b);
				add(a,b);    //这里不能加add(b,a),在读到b时会加这条边,否则在下一次add(b,a)会判重边
			}
		}
		for(int i=0;i<t;i++){
			if(!dfn[i]) tarjan(i,i);
		}
		sort(ans,ans+ecnt,cmp);
		cout<<ecnt<<" critical links"<<endl;
		for(int i=0;i<ecnt;i++){
			printf("%d - %d\n",ans[i].u,ans[i].v);
		}
		cout<<endl;
	}
    return 0;
}

转载于:https://www.cnblogs.com/KirinSB/p/9409104.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值