思达BI软件Style Intelligence实例教程—交通事故分析

 

教程视频:http://v.youku.com/v_show/id_XMTI4MTM3OTIwNA==.html?from=y1.7-2

道路交通的发展和进步给人类带来无数的生活便利、经济效益以及社会的繁荣。但交通工具的使用导致交通事故的频繁发生也给人类带来灾难,使人类蒙受了难以计数的损失。交通事故已经成为当今社会的一大公害。

本文将使用思达商业智能平台Style Intelligence上对04-13年交通事故情况进行分析。

新建工作表,导入数据,保存工作表。

BI实例:交通事故分析"

交通事故类型分析

新建viewsheet,拖拽一个图表到编辑区。拖拽年份及各类型发生交通事故的次数,到XY轴相应位置,如图:

BI实例:交通事故分析"

选择图表的颜色和形状

BI实例:交通事故分析"
BI实例:交通事故分析"

交通事故死亡人数/受伤人数分析

拖拽图表到编辑区,拖拽年份及事故死亡、伤亡人数到XY轴相应位置,如图:

BI实例:交通事故分析"
BI实例:交通事故分析"

点击Y轴下拉框,选择“相对于前一个的百分比”可实现同比,来计算交通事故死亡人数及死亡人数的增长率。

BI实例:交通事故分析"
BI实例:交通事故分析"

各省交通事故分析

拖拽图表到编辑区,拖拽省份及04-13年各省交通事故总死亡人数到XY轴相应位置,如图:

BI实例:交通事故分析"
BI实例:交通事故分析"

继续拖拽图表到编辑区,拖拽省份及04-13年各省交通事故发生总次数到XY轴相应位置,如图:

BI实例:交通事故分析"
BI实例:交通事故分析"

转载于:https://www.cnblogs.com/style-report/p/4644992.html

内容概要:本文介绍了一个基于MATLAB实现的无人机三维路径规划项目,采用蚁群算法(ACO)与多层感知机(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习与启发因子优化,实现路径的动态调整与多目标优化。项目解决了高维空间建模、动态障碍规避、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算与参数自适应机制,提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练与融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法与神经网络的高校学生、科研人员及从事无人机路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、机器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人机路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑与实时避障等多目标协同优化;③为智能无人系统的自主决策与环境适应能力提供算法支持; 阅读建议:此资源结合理论模型与MATLAB实践,建议读者在理解ACO与MLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合机制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值