使用Keras基于AdvancedEAST的场景图像文本检测

Blog:https://blog.csdn.net/linchuhai/article/details/84677249

GitHub:https://github.com/huoyijie/AdvancedEAST

自然场景文本检测

自然场景文字是图像高层语义的一种重要载体,自然场景文本检测是图像处理的核心模块,近年来ICDAR的历界比赛成绩不断提升:

Result:http://rrc.cvc.uab.es/?ch=4&com=evaluation&task=1&gtv=1

EAST

论文:旷视 - CVPR2017 - EAST: An Efficient and Accurate Scene Text Detector

开源:https://github.com/argman/EAST

优点:

1)步骤简化:传统的文本检测方法和一些基于深度学习的文本检测方法,大多是Multi-stage,在训练时需要对多个Stage调优,这势必会影响最终的模型效果,而且非常耗时。针对上述存在的问题,EAST提出了端到端的文本检测方法,消除中间多个Stage(如候选区域聚合,文本分词,后处理等),直接预测文本行,其架构就是下图中对应的E部分,跟前面的方法比起来的确少了比较多的过程。(类似于经典的CTPN架构)

2)多方向文本定位:虽然CTPN方法在水平文本的检测方面效果比较好,但是对于竖直文本或者倾斜的文本,该方法的检测就很差,而EAST能支持多方向文本的定位。

AdvancedEAST

转载于:https://www.cnblogs.com/5211314jackrose/p/11289577.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Keras是一个基于Python的深度学习库,可以用于构建各种类型的神经网络模型。它可以用于文本分类任务,本文将介绍使用Keras实现文本分类的过程。 首先,我们需要准备数据集。一个常用的文本分类数据集是IMDB电影评论数据集,其中包含了来自互联网电影数据库的50,000个电影评论,其中25,000个用于训练,25,000个用于测试。每个评论都被标记为正面或负面。 在Keras中,我们可以使用Tokenizer类将文本转换为数字序列,每个单词对应一个数字。我们还需要对文本进行预处理,包括去除标点符号、停用词、转换为小写等操作。 接下来,我们可以使用Keras的Sequential模型定义我们的神经网络模型。对于文本分类任务,我们通常使用嵌入层将数字序列转换为向量表示,并添加全局池化层、Dropout层和全连接层。我们可以根据需要添加多个隐藏层。 最后,我们需要编译模型并训练它。我们可以选择不同的优化器、损失函数和评估指标。在训练期间,我们可以使用验证集来监视模型的性能,并根据需要进行调整。 下面是一个使用Keras进行文本分类的示例代码: ```python from keras.datasets import imdb from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential from keras.layers import Embedding, GlobalMaxPooling1D, Dropout, Dense # 加载数据集 (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=10000) # 将文本转换为数字序列 tokenizer = Tokenizer(num_words=10000) x_train = tokenizer.sequences_to_matrix(x_train, mode='binary') x_test = tokenizer.sequences_to_matrix(x_test, mode='binary') # 填充序列 x_train = pad_sequences(x_train, maxlen=100) x_test = pad_sequences(x_test, maxlen=100) # 定义模型 model = Sequential() model.add(Embedding(input_dim=10000, output_dim=32, input_length=100)) model.add(GlobalMaxPooling1D()) model.add(Dropout(0.5)) model.add(Dense(1, activation='sigmoid')) # 编译模型 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # 训练模型 model.fit(x_train, y_train, validation_split=0.2, epochs=10, batch_size=128) # 评估模型 score = model.evaluate(x_test, y_test, batch_size=128) print('Test loss:', score[0]) print('Test accuracy:', score[1]) ``` 在这个示例中,我们使用了嵌入层将数字序列转换为向量表示,并添加了全局池化层、Dropout层和全连接层。我们使用了Adam优化器、二元交叉熵损失函数和精度评估指标。我们使用了20%的训练数据作为验证集,并在10个时期内训练模型。最后,我们评估了模型在测试集上的性能。 这只是一个简单的示例,你可以根据需要调整模型架构、优化器、损失函数和评估指标等。通过使用Keras,你可以很容易地构建和训练各种类型的神经网络模型,包括文本分类模型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值