Python学习 - 编写自己的ORM(2)

上一篇文章简单的实现了ORM(对象关系模型),这一篇文章主要实现简单的MySQL数据库操作。

想要操作数据库,首先要建立一个数据库连接。下面定义一个创建数据库连接的函数,得到一个连接叫做engine。

def create_engine(user,password,database,host='127.0.0.1',port=3306,**kw):
    import mysql.connector
    global engine
    if engine is not None:
        raise DBError('Engine is already initialized.')
    params = dict(user=user,password=password,database=database,host=host,port=port)
    defaults = dict(use_unicode=True,charset='utf8',collation='utf8_general_ci',autocommit=False)
    #print ('%s %s %s %s %s') % (user,password,database,host,port)
    for k,v in defaults.iteritems():
        params[k] = kw.pop(k,v)
    params.update(kw)
    params['buffered'] = True
    engine = mysql.connector.connect(**params)
    cursor = engine.cursor()

 有了连接就可以对数据库进行操作了。下面写了几个函数,可以对数据库进行查询和插入操作。

def _select(sql,first,*args):
    cursor = None
    sql = sql.replace('?','%s')
    global engine
    try:
        cursor = engine.cursor()
        cursor.execute(sql,args)
        if cursor.description:
            names = [x[0] for x in cursor.description]
        if first:
            values = cursor.fetchone()
            if not values:
                return None
            return Dict(names,values)
        return [Dict(names,x) for x in cursor.fetchall()]
    finally:
        if cursor:
            cursor.close()

def select_one(sql,*args):
    return _select(sql,True,*args)

def select(sql,*args):
    return _select(sql,False,*args)

def _update(sql,*args):
    cursor = None
    global engine
    sql = sql.replace('?','%s')
    print sql
    try:
        cursor = engine.cursor()
        cursor.execute(sql,args)
        r = cursor.rowcount
        engine.commit()
        return r
    finally:
        if cursor:
            cursor.close()

def insert(table,**kw):
    cols, args = zip(*kw.iteritems())
    sql = 'insert into %s (%s) values(%s)' % (table,','.join(['%s' % col for col in cols]),','.join(['?' for i in range(len(cols))]))
    print ('sql %s args %s' % (sql, str(args)))
    return _update(sql,*args)

到这里,基本的数据库操作已经完成了。但是,根据廖雪峰的教程,这还远远不够。

  • 如果要在一个数据库连接中实现多个操作,上面的代码效率很低,没次执行玩一条语句,就需要重新分配一个连接。
  • 在一次事务中执行多条操作也是一样效率低下。
  • 如果服务器为不同用户数据库请求都分配一个线程来建立连接,但是在进程中,连接是可供享使用的。这样问题就来了,导致数据库操作可能异常。

针对第三个问题,应该使每个连接是每个线程拥有的,其它线程不能访问,使用threading.local。首先定义一个类,来保存数据库的上下文:

class _DbCtx(threading.local):

    def __init__(self):
        self.connection = None
        self.transactions = 0

    def is_init(self):
        return not self.connection is None

    def init(self):
        self.connection = engine # 创建数据库连接
        self.transactions = 0

    def cleanup(self):
        self.connection.cleanup()
        self.connection = None

    def cursor(self):
        return self.connection.cursor()

 上面的代码有一个错误。因为Python的赋值语句只是将一个对象的引用传给一个变量,就如上面代码中 init函数中 self.connection = engine。表明self.connection和engine都指向一个数据库连接的对象。如果将self.connection给cleanup了,那么engine指向的对象也被cleanup了。下图是一个例子:

a是类foo实例的一个引用,执行b=a后,在执行b.clean(),此时应该只是b的v值被更改为0,但是执行a.v却发现v的值也变为0了。

下面是最后的代码,只是封装了最底层的数据库操作,代码也写的很涨,虽然是模仿廖雪峰的代码。

# -*- coding: utf-8 -*-
import time, uuid, functools, threading, logging

class Dict(dict):
    '''
    Simple dict but support access as x.y style.

    '''
    def __init__(self, names=(), values=(), **kw):
        super(Dict, self).__init__(**kw)
        for k, v in zip(names, values):
            self[k] = v

    def __getattr__(self, key):
        try:
            return self[key]
        except KeyError:
            raise AttributeError(r"'Dict' object has no attribute '%s'" % key)

    def __setattr__(self, key, value):
        self[key] = value
class DBError(Exception):
    pass
class MultiColumnsError(Exception):
    pass
engine = None
class _DbCtx(threading.local):

    def __init__(self):
        self.connection = None
        self.transactions = 0

    def is_init(self):
        return not self.connection is None

    def init(self):
        self.connection = engine
        self.transactions = 0

    def cleanup(self):
        self.connection = None
    
    def cursor(self):
        return self.connection.cursor()

def create_engine(user,password,database,host='127.0.0.1',port=3306,**kw):
    import mysql.connector
    global engine
    if engine is not None:
        raise DBError('Engine is already initialized.')
    params = dict(user=user,password=password,database=database,host=host,port=port)
    defaults = dict(use_unicode=True,charset='utf8',collation='utf8_general_ci',autocommit=False)
    #print ('%s %s %s %s %s') % (user,password,database,host,port)
    for k,v in defaults.iteritems():
        params[k] = kw.pop(k,v)
    params.update(kw)
    params['buffered'] = True
    engine = mysql.connector.connect(**params)
    print type(engine)

_db_ctx = _DbCtx()
class _ConnectionCtx(object):

    def __enter__(self):
        self.should_cleanuo = False
        if not _db_ctx.is_init():
            cursor = engine.cursor()
            _db_ctx.init()
            self.should_cleanup = True
        return self

    def __exit__(self,exctype,excvalue,traceback):
        if self.should_cleanup:
            _db_ctx.cleanup()

def with_connection(func):
    @functools.wraps(func)
    def _wrapper(*args,**kw):
        with _ConnectionCtx():
            return func(*args, **kw)
    return _wrapper

def _select(sql,first,*args):
    cursor = None
    sql = sql.replace('?','%s')
    global _db_ctx
    try:
        cursor = _db_ctx.cursor()
        cursor.execute(sql,args)
        if cursor.description:
            names = [x[0] for x in cursor.description]
        if first:
            values = cursor.fetchone()
            if not values:
                return None
            return Dict(names,values)
        return [Dict(names,x) for x in cursor.fetchall()]
    finally:
        if cursor:
            cursor.close()
@with_connection
def select_one(sql,*args):
    return _select(sql,True,*args)
@with_connection
def select_int(sql,*args):
    d = _select(sql,True,*args)
    if len(d) != 1:
        raise MultoColumnsError('Except only one column.')
    return d.values()[0]
@with_connection
def select(sql,*args):
    global engine
    print type(engine)
    return _select(sql,False,*args)
@with_connection
def _update(sql,*args):
    cursor = None
    global _db_ctx 
    sql = sql.replace('?','%s')
    print sql
    try:
        cursor = _db_ctx.cursor()
        cursor.execute(sql,args)
        r = cursor.rowcount
        engine.commit()
        return r
    finally:
        if cursor:
            cursor.close()

def insert(table,**kw):
    cols, args = zip(*kw.iteritems())
    sql = 'insert into %s (%s) values(%s)' % (table,','.join(['%s' % col for col in cols]),','.join(['?' for i in range(len(cols))]))
    print ('sql %s args %s' % (sql, str(args)))
    return _update(sql,*args)

create_engine(user='root',password='z5201314',database='test')
u1 = select_one('select * from user where id=?',1)
print 'u1'
print u1
print 'start selet()...'
u2 = select('select * from user')
for item in u2:
    print ('%s %s' % (item.name,item.id))
print 'name:%s id: %s' % (u1.name,u1.id)

 

转载于:https://www.cnblogs.com/mr-zys/p/4034159.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
数据库的名字叫WawaDB,是用python实现的。由此可见python是灰常强大啊! 简介 记录日志的需求一般是这样的: 只追加,不修改,写入按时间顺序写入; 大量写,少量读,查询一般查询一个时间段的数据; MongoDB的固定集合很好的满足了这个需求,但是MongoDB占内存比较大,有点儿火穿蚊子,小题大做的感觉。 WawaDB的思路是每写入1000条日志,在一个索引文件里记录下当前的时间和日志文件的偏移量。 然后按时间询日志时,先把索引加载到内存中,用二分法查出时间点的偏移量,再打开日志文件seek到指定位置,这样就能很快定位用户需要的数据并读取,而不需要遍历整个日志文件。 性能 Core 2 P8400,2.26GHZ,2G内存,32 bit win7 写入测试: 模拟1分钟写入10000条数据,共写入5个小时的数据, 插入300万条数据,每条数据54个字符,用时2分51秒 读取测试:读取指定时间段内包含某个子串的日志 数据范围 遍历数据量 结果数 用时(秒) 5小时 300万 604 6.6 2小时 120万 225 2.7 1小时 60万 96 1.3 30分钟 30万 44 0.6 索引 只对日志记录的时间做索引, 简介里大概说了下索引的实现,二分查找肯定没B Tree效率高,但一般情况下也差不了一个数量级,而且实现特别简单。 因为是稀疏索引,并不是每条日志都有索引记录它的偏移量,所以读取数据时要往前多读一些数据,防止漏读,等读到真正所需的数据时再真正给用户返回数据。 如下图,比如用户要读取25到43的日志,用二分法找25,找到的是30所在的点, 索 引:0 10 20 30 40 50 日志:|.........|.........|.........|.........|.........|>>>a = [0, 10, 20, 30, 40, 50]>>>bisect.bisect_left(a, 35)>>>3>>>a[3]>>>30>>>bisect.bisect_left(a, 43)>>>5>>>a[5]>>>50 所以我们要往前倒一些,从20(30的前一个刻度)开始读取日志,21,22,23,24读取后因为比25小,所以扔掉, 读到25,26,27,...后返回给用户 读取到40(50的前一个刻度)后就要判断当前数据是否大于43了,如果大于43(返回全开区间的数据),就要停止读了。 整体下来我们只操作了大文件的很少一部分就得到了用户想要的数据。 缓冲区 为了减少写入日志时大量的磁盘写,索引在append日志时,把buffer设置成了10k,系统默认应该是4k。 同理,为了提高读取日志的效率,读取的buffer也设置了10k,也需要根据你日志的大小做适当调整。 索引的读写设置成了行buffer,每满一行都要flush到磁盘上,防止读到不完整的索引行(其实实践证明,设置了行buffer,还是能读到半拉的行)。 查询 啥?要支持SQL,别闹了,100行代码怎么支持SQL呀。 现在查询是直接传入一个lambada表达式,系统遍历指定时间范围内的数据行时,满足用户的lambada条件才会返回给用户。 当然这样会多读取很多用户不需要的数据,而且每行都要进行lambda表达式的运算,不过没办法,简单就是美呀。 以前我是把一个需要查询的条件和日志时间,日志文件偏移量都记录在索引里,这样从索引里查找出符合条件的偏移量,然后每条数据都如日志文件里seek一次,read一次。这样好处只有一个,就是读取的数据量少了,但缺点有两个: 索引文件特别大,不方便加载到内存中 每次读取都要先seek,貌似缓冲区用不上,特别慢,比连续读一个段的数据,并用lambda过滤慢四五倍 写入 前面说过了,只append,不修改数据,而且每行日志最前面是时间戳。 多线程 查询数据,可以多线程同时查询,每次查询都会打开一个新的日志文件的描述符,所以并行的多个读取不会打架。 写入的话,虽然只是append操作,但不确认多线程对文件进行append操作是否安全,所以建议用一个队列,一个专用线程进行写入。 锁 没有任何锁。 排序 默认查询出来的数据是按时间正序排列,如需其它排序,可取到内存后用python的sorted函数排序,想怎么排就怎么排。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值