算法简单,考察思路
题目意思是找出两个点\(a,b\),使得\(a,b\)是联通的且\(a\)在\(b\)的前面,求\((a-b)\)的最大值
对于这道题目,我们可以先正着跑一遍SPFA(嗯,没错,它不卡SPFA)求出每个点之前的点的最小值,然后再反着跑一遍SPFA,求出每个点之后的最大值,之后枚举每个点,用最大值减最小再取\(max\)就可以了
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
struct zzz{
int t,nex;
}e[500010<<1]; int head[100010],tot;
void add(int x,int y){
e[++tot].t=y;
e[tot].nex=head[x];
head[x]=tot;
}
struct zzz2{
int t,nex;
}e2[500010<<1]; int head2[100010],tot2;
void add2(int x,int y){
e2[++tot2].t=y;
e2[tot2].nex=head2[x];
head2[x]=tot2;
}
int a[100010];
struct hhh{
int maxn,minn;
}dis[100010]; bool vis[100010];
int read(){
int k=0; char c=getchar();
for(;c<'0'||c>'9';) c=getchar();
for(;c>='0'&&c<='9';c=getchar())
k=k*10+c-48;
return k;
}
void SPFA(int s){
queue <int> q;
q.push(s);
while(!q.empty()){
int k=q.front(); q.pop(); vis[k]=0;
for(int i=head[k];i;i=e[i].nex){
if(dis[e[i].t].minn>a[k]){
dis[e[i].t].minn=a[k];
if(!vis[e[i].t]) vis[e[i].t]=1, q.push(e[i].t);
}
}
}
}
void SPFA2(int s){
queue <int> q;
q.push(s);
while(!q.empty()){
int k=q.front(); q.pop(); vis[k]=0;
for(int i=head2[k];i;i=e2[i].nex){
if(dis[e2[i].t].maxn<a[k]){
dis[e2[i].t].maxn=a[k];
if(!vis[e2[i].t]) vis[e2[i].t]=1, q.push(e2[i].t);
}
}
}
}
int ans;
int main(){
int n=read(),m=read();
for(int i=1;i<=n;i++) a[i]=read();
for(int i=1;i<=m;i++){
int x=read(),y=read(),z=read();
if(z==1) add(x,y),add2(y,x);
else add(x,y), add(y,x), add2(x,y), add2(y,x);
}
for(int i=1;i<=n;i++) dis[i].minn=a[i];
SPFA(1); memset(vis,0,sizeof(vis)); SPFA2(n);
for(int i=1;i<=n;i++) ans=max(dis[i].maxn-dis[i].minn,ans);
cout<<ans;
return 0;
}