Noip2009 最优贸易

传送门

算法简单,考察思路


题目意思是找出两个点\(a,b\),使得\(a,b\)是联通的且\(a\)\(b\)的前面,求\((a-b)\)的最大值

对于这道题目,我们可以先正着跑一遍SPFA(嗯,没错,它不卡SPFA)求出每个点之前的点的最小值,然后再反着跑一遍SPFA,求出每个点之后的最大值,之后枚举每个点,用最大值减最小再取\(max\)就可以了

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
struct zzz{
    int t,nex;
}e[500010<<1]; int head[100010],tot;
void add(int x,int y){
    e[++tot].t=y;
    e[tot].nex=head[x];
    head[x]=tot;
}
struct zzz2{
    int t,nex;
}e2[500010<<1]; int head2[100010],tot2;
void add2(int x,int y){
    e2[++tot2].t=y;
    e2[tot2].nex=head2[x];
    head2[x]=tot2;
}
int a[100010];
struct hhh{
    int maxn,minn;
}dis[100010]; bool vis[100010];
int read(){
    int k=0; char c=getchar();
    for(;c<'0'||c>'9';) c=getchar();
    for(;c>='0'&&c<='9';c=getchar())
      k=k*10+c-48;
    return k;
}
void SPFA(int s){
    queue <int> q;
    q.push(s); 
    while(!q.empty()){
        int k=q.front(); q.pop(); vis[k]=0;
        for(int i=head[k];i;i=e[i].nex){
            if(dis[e[i].t].minn>a[k]){
                dis[e[i].t].minn=a[k];
                if(!vis[e[i].t]) vis[e[i].t]=1, q.push(e[i].t);
            }
        }
    }
}
void SPFA2(int s){
    queue <int> q;
    q.push(s);
    while(!q.empty()){
        int k=q.front(); q.pop(); vis[k]=0;
        for(int i=head2[k];i;i=e2[i].nex){
            if(dis[e2[i].t].maxn<a[k]){
                dis[e2[i].t].maxn=a[k];
                if(!vis[e2[i].t]) vis[e2[i].t]=1, q.push(e2[i].t);
            }
        }
    }
}
int ans;
int main(){
    int n=read(),m=read();
    for(int i=1;i<=n;i++) a[i]=read();
    for(int i=1;i<=m;i++){
        int x=read(),y=read(),z=read();
        if(z==1) add(x,y),add2(y,x);
        else add(x,y), add(y,x), add2(x,y), add2(y,x);
    }
    for(int i=1;i<=n;i++) dis[i].minn=a[i];
    SPFA(1); memset(vis,0,sizeof(vis)); SPFA2(n);
    for(int i=1;i<=n;i++) ans=max(dis[i].maxn-dis[i].minn,ans);
    cout<<ans;
    
    return 0;
}

转载于:https://www.cnblogs.com/wxl-Ezio/p/9642113.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值