周末随想

转自我的Q-zone 发表于2005年10月23日

很喜欢周末的感觉,静静的夜晚,一个人静静的思考,一支笔,轻轻的写下自己的心情,看着字迹从笔端滑过,一种幸福的满足感也轻轻在心上掠过。喜欢周末,因为没课,不是不喜欢上课,实在是喜欢自由的感觉,只做自己想做的事。
    不知从何时起,感觉自己变得很脆弱,经常会需要找人聊聊天,可能是自己太累了,心灵需要放松一下,抑或是自己越来越不成熟了,或者是自己用情太深,太过容易受到伤害,总之,好喜欢找个知己,倾听自己的心声。可能人总是需要交流的吧。
    一个人的时候,喜欢静静的想着自己的未来,给自己设定一个美好的位置,拥有一个还算不错的工作,和一个美满幸福的家庭,虽然不知道如何回答工作与家庭哪个更重要,但在我的童话里,爱永远都是第一位的。可能是受了那句歌词的影响吧,没人分享,再多的成就都不圆满,没人安慰,苦过了还是酸。或许是吧。
    一直都知道自己是一个任性的孩子,太不喜欢压抑自己的感情,想笑就笑,高兴的时候,可以不吃饭不睡觉,郁闷的时候,会让自己好好的放纵一下,不要太委屈了自己,别人对不对你好是别人的事,自己要对自己好。
    唉,不知是自己懒还是的确太忙,太累,总之很久都没写东西了,好久都没有那种深夜一个人的浪漫了,可能生活就是这样吧,为了一些人或一些事就要放弃很多东西,而我们就是要在这不完美中寻求相对的完美。

转载于:https://www.cnblogs.com/ninglee/archive/2009/07/28/1533525.html

内容概要:本文研究了一种基于离散韦格纳分布(DWVD)结合卷积神经网络(CNN)与长短期记忆网络(LSTM)的故障诊断方法,利用DWVD对振动信号进行时频特征提取,并将其转化为二维图像输入到CNN-LSTM混合深度学习模型中,实现对机械系统尤其是轴承故障的高精度自动识别。文中详细阐述了信号处理流程、模型构建方式及训练策略,并采用CWRU轴承数据集进行实验验证,结果表明该方法在复杂工况下具有优异的诊断准确率和鲁棒性;同时提供了完整的Matlab代码实现,便于复现与进一步研究。; 适合人群:具备一定信号处理与机器学习基础,从事机械故障诊断、工业自动化或智能制造方向的研究生、科研人员及工程技术人员;熟悉Matlab编程者更佳。; 使用场景及目标:①应用于旋转机械设备的状态监测与早期故障预警;②为深度学习在工业故障诊断中的落地提供可参考的技术路线与实现方案;③支持学术研究中的模型对比、算法改进与创新验证。; 阅读建议:建议结合提供的Matlab代码逐模块理解实现细节,重点关注DWVD时频图生成、数据预处理、CNN-LSTM网络结构设计与参数调优过程,同时可尝试在其他公开数据集上迁移验证以加深理解。基于离散韦格纳分布(DWVD)结合卷积神经网络(CNN)与长短期记忆网络(LSTM)的故障诊断研究(Matlab代码实现)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值