口胡一种别的解法:
三重退背包,g1[j]k]表示不选x的选了j件物品,体积为k的方案数,g[0][0] = 1 , g1[j][k]=dp[j][k]-g1[j-1][k-a[x]]
然后按这样再退三层,最后看g3[10][87]的方案数是否非0即可,这样复杂度是O(50*50*50*10*87)
如果直接枚举删掉的数,然后用可行性二维01背包做
复杂度是O(50*50*50)*O(n*10*87) 再加上bitset优化第二维 复杂度/32 ,由于n比较小,所以也差不多
/* 在n个数里找到三个数删去,问取10个数能否凑成87 dp[i][j]表示选i个数凑出 */ #include<bits/stdc++.h> using namespace std; int n,a[100],ans[55][55][55]; bitset<100>dp[12]; void calc(int x,int y,int z){ for(int i=0;i<=11;i++)dp[i].reset(); dp[0][0]=1; for(int i=1;i<=n;i++) if(i!=x && i!=y && i!=z) for(int j=10;j>=1;j--) dp[j]|=(dp[j-1]<<a[i]); if(dp[10][87]) ans[x][y][z]=1; else ans[x][y][z]=0; } int main(){ int t;cin>>t; while(t--){ memset(ans,0,sizeof ans); cin>>n; for(int i=1;i<=n;i++)cin>>a[i]; for(int i=1;i<=n;i++) for(int j=i;j<=n;j++) for(int k=j;k<=n;k++) calc(i,j,k); int q;cin>>q; while(q--){ int s[3]; scanf("%d%d%d",&s[0],&s[1],&s[2]); sort(s,s+3); if(ans[s[0]][s[1]][s[2]]) puts("Yes"); else puts("No"); } } }