Box-Cox变换

简介

编辑
Box-Cox变换的一般形式为:
式中
   
为经Box-Cox变换后得到的新变量,
   
为原始连续因变量,
   
为变换参数。以上变换要求原始变量
   
取值为正,若取值为负时,可先对所有原始数据同加一个常数
   
使其
   
为正值,然后再进行以上的变换。对不同的
   
所作的变换不同。在
   
时该变换为对数变换,
   
时为倒数变换,而在
   
时为平方根变换。Box-Cox变换中参数
   
的估计有两种方法:(1) 最大似然估计;(2)Bayes方法。通过求解
   
值,就可以确定具体采用哪种变换形式。

变换过程

编辑
Box-Cox变换是对回归因变量Y的如下变换:
在这里
   
是一个待定变换参数。对于不同的
   
,所作的变换也不相同,所以Box-Cox变换是一族变换,它包括了平方根变换(
   
),对数变换(
   
)和倒数变换(
   
)等常用变换,对因变量的n个观测值
   
,应用上述变换,可得变换后的向量
我们要确定变换参数
   
,使得
   
满足
即要求通过因变量的变换,使得变换过的向量
   
与回归自变量具有线性相依关系,误差也服从正态分布.误差各分量是等方差且相互独立,故Box-Cox变换是通过参数
   
的适当选择。达到对原来数据的“综合治理”,使其满足一个正态线性回归模型的所有假设条件。
用极大似然方法来确定
   
,由于
   
,故对固定的
   
   
   
的似然函数为
其中,
   
为变换的Jacobi行列式
   
固定时,
   
是不依赖于参数
   
   
的常数因子,
   
的其余部分关于
   
   
求导数,令其等于零,可求得
   
   
的极大似然估计
残差平方和为
对应的似然最大值为
该式为
   
的一元函数,通过求它的最大值来确定
   
,因为
   
是x的单调函数,问题可转化为求
   
的最大值,对式(3)求对数,略去与
   
无关的常数项,得
其中,
式(4)对Box-Cox变换在计算机上实现带来很大的方便,因为我们只要求出残差平方和
   
的最小值,就可以求出
   
的最大值,虽然很难找出使
   
达到最小值的
   
的解析表达式,但是对一系列的
   
给定值,通过最普通的求最小二乘估计的回归程序,很容易计算出对应的
   
,画出
   
关于
   
的曲线,可在图上近似地找出
   
达到最小值的
   
Box-Cox变换变换的具体步骤如下:
(1)对给定的
   
值,计算
   
,如果
   
,用式(6)计算,否则用式(7);
(2)利用式(5)计算 残差平方和
   
(3)对一系列的
   
值,重复上述步骤,得到相应的残差平方和
   
的一串值,以
   
为横轴,作出相应的曲线,用直观的方法,找出使
   
达到最小值的点
   
(4)利用式(2),求出
   

意义

编辑
Box-Cox变换的一个显著优点是通过求变换参数
   
来确定变换形式,而这个过程完全基于数据本身而无须任何先验信息,这无疑比凭经验或通过尝试而选用 对数平方根等变换方式要客观和精确。
Box-Cox变换的目的是为了让数据满足线性模型的基本假定,即线性、正态性及方差齐性,然而经Box-Cox变换后数据是否同时满足了以上假定,仍需要考察验证  [2]  。

转载于:https://www.cnblogs.com/shida-liu/p/9810078.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值