Solution
虽然说这个可能原本是一道愉快的树套树但是
没有强制在线并且是三维限制那就大力cdq分治啊!
看到“按照某个顺序依次删除”这样的字眼,比较容易联想到一个套路:反过来看,变成按照某个顺序依次插入
那么对于一个询问,删掉它之前(转化完了之后就是插入它之后)的所会影响到的逆序对数可以分为两种:一种是在它前面但是比它大的,一种是在它后面但是比它小的
对于每一个转化后的插入我们都计算出这样两个值的和,然后答案显然就是累加一下就好了
所以我们按照位置递增做一次cdq,然后再按照位置递减做一次cdq,就可以将上面两种情况分别算出来了
总的来说就是:时间维用排序,位置维用cdq,数值维用树状数组,然后就很愉快滴做完了
注意因为一开始的时候我们将顺序反了过来所以最后要反着输出
代码大概长这个样子:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=100010;
struct Op{
int pos,val,t;
friend bool operator < (Op x,Op y)
{return x.t<y.t;}
}a[N],rec[N];
int lis[N],pos[N];
ll c[N],ans[N];
int n,m,tot,mx;
void insert(int x,int delta){
for (;x;x-=x&-x) c[x]+=delta;
}
int query(int x){
int ret=0;
for (;x<=mx;x+=x&-x) ret+=c[x];
return ret;
}
void solve(int l,int r){
if (l==r) return;
int mid=l+r>>1;
solve(l,mid);
solve(mid+1,r);
int tmp,tp=l,tot=l-1;
for (int i=mid+1;i<=r;++i){
while (tp<=mid&&a[tp].pos<a[i].pos)
rec[++tot]=a[tp],insert(a[tp++].val,1);
rec[++tot]=a[i];
ans[a[i].t]+=query(a[i].val+1);
}
for (int i=l;i<tp;++i) insert(a[i].val,-1);
for (int i=tp;i<=mid;++i) rec[++tot]=a[i];
for (int i=l;i<=r;++i) a[i]=rec[i];
}
int main(){/*{{{*/
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
int x;
scanf("%d%d",&n,&m);
mx=0;
for (int i=1;i<=n;++i)
scanf("%d",&a[i].val),a[i].pos=i,pos[a[i].val]=i,mx=max(mx,a[i].val);
for (int i=1;i<=m;++i){
scanf("%d",&x);
a[pos[x]].t=m-i+1;
}
sort(a+1,a+1+n);
solve(1,n);
for (int i=1;i<=n;++i)
a[i].pos*=-1,a[i].val=n-a[i].val+1;
sort(a+1,a+1+n);
solve(1,n);
for (int i=1;i<=m;++i) ans[i]+=ans[i-1];
for (int i=1;i<=m;++i)
printf("%lld\n",ans[m-i+1]);
}/*}}}*/