题目描述
例如在数组{7, 5, 6, 4}中, 一共存在 5 个逆序对,分别是(7, 6)、(7,5),(7, 4)、(6, 4)和(5, 4)。
我们以数组{7, 5, 6, 4}为例来分析统计逆序对的过程。每次扫描到一个数字的时候,我们不能拿它和后面的每一个数字作比较,否则时间复杂度就是 O(n^5),因此我们可以考虑先比较两个相邻的数字。
如图 5.1 ( a )和图 5.1 ( b)所示,我们先把数组分解成两个长度为 2 的子数组, 再把这两个子数组分别拆分成两个长度为 1 的子数组。接下来一边合并相邻的子数组, 一边统计逆序对的数目。在第一对长度为 1 的子数组{7}、{5}中7 大于 5 , 因此(7, 5)组成一个逆序对。同样在第二对长度为 1 的子数组{6}、{4}中也有逆序对(6, 4)。由于我们已经统计了这两对子数组内部的逆序对,因此需要把这两对子数组排序( 图 5.1 ( c)所示),以免在以后的统计过程中再重复统计。
注:图中省略了最后一步, 即复制第二个子数组最后剩余的 4 到辅助数组中。
- (a) P1 指向的数字大于 P2指向的数字,表明数组中存在逆序对。P2 指向的数字是第二个子数组的第二个数字, 因此第二个子数组中有两个数字比 7 小. 把逆序对数目加 2,并把 7 复制到辅助数组,向前移动 P1 和 P3。
- (b) P1 指向的数字小子 P2 指向的数字,没有逆序对。把 P2 指向的数字复制到辅助数组,并向前移动 P2 和 P3 。
- (c) P1 指向的数字大于 P2 指向的数字,因此存在逆序对。由于 P2 指向的数字是第二个子数组的第一个数字,子数组中只有一个数字比 5 小. 把逆序对数目加 1,并把 5 复制到辅助数组,向前移动 P1 和 P3。
接下来我们统计两个长度为 2 的子数组之间的逆序对。我们在图 5.2 中细分图 5.1 ( d)的合并子数组及统计逆序对的过程。
我们先用两个指针分别指向两个子数组的末尾,并每次比较两个指针指向的数字。如果第一个子数组中的数字大于第二个子数组中的数字,则构成逆序对,并且逆序对的数目等于第二个子数组中剩余数字的个数(如图 5.2 (a)和图 5.2 (c)所示)。如果第一个数组中的数字小于或等于第二个数组中的数字,则不构成逆序对(如图 5.2 (b)所示〉。每一次比较的时候,我们都把较大的数字从·后往前复制到一个辅助数组中去,确保辅助数组中的数字是递增排序的。在把较大的数字复制到辅助数组之后,把对应的指针向前移动一位,接下来进行下一轮比较。
经过前面详细的诗论, 我们可以总结出统计逆序对的过程:先把数组分隔成子数组, 先统计出子数组内部的逆序对的数目,然后再统计出两个相邻子数组之间的逆序对的数目。在统计逆序对的过程中,还需要对数组进行排序。如果对排序贺,法很熟悉,我们不难发现这个排序的过程实际上就是归并排序。
public class Main { public static int inversePairs(int[] data) { if (data == null || data.length < 1) { throw new IllegalArgumentException("Array arg should contain at least a value"); } int[] copy = new int[data.length]; System.arraycopy(data, 0, copy, 0, data.length); return inversePairsCore(data, copy, 0, data.length - 1); } private static int inversePairsCore(int[] data, int[] copy, int start, int end) { if (start == end) { copy[start] = data[start]; return 0; } int length = (end - start) / 2; int left = inversePairsCore(copy, data, start, start + length); int right = inversePairsCore(copy, data, start + length + 1, end); // 前半段的最后一个数字的下标 int i = start + length; // 后半段最后一个数字的下标 int j = end; // 开始拷贝的位置 int indexCopy = end; // 逆序数 int count = 0; while (i >= start && j >= start + length + 1) { if (data[i] > data[j]) { copy[indexCopy] = data[i]; indexCopy--; i--; count += j - (start + length); // 对应的逆序数 } else { copy[indexCopy] = data[j]; indexCopy--; j--; } } for (; i >= start; i--) { copy[indexCopy] = data[i]; indexCopy--; i--; } for (; j >= start + length + 1; j--) { copy[indexCopy] = data[j]; indexCopy--; j--; } return count + left + right; } public static void main(String[] args) { int[] data = {1, 2, 3, 4, 7, 6, 5}; System.out.println(inversePairs(data)); // 3 int[] data2 = {6, 5, 4, 3, 2, 1}; System.out.println(inversePairs(data2)); // 15 int[] data3 = {1, 2, 3, 4, 5, 6}; System.out.println(inversePairs(data3)); // 0 int[] data4 = {1}; System.out.println(inversePairs(data4)); // 0 int[] data5 = {1, 2}; System.out.println(inversePairs(data5)); // 0 int[] data6 = {2, 1}; System.out.println(inversePairs(data6)); // 1 int[] data7 = {1, 2, 1, 2, 1}; System.out.println(inversePairs(data7)); // 3 } }