Deep Learning 学习笔记(2):多参数的线性回归

本文详细介绍了线性回归模型中参数方程的复杂化及其对应的梯度下降法优化过程,包括多变量、多项式等场景的应用,并通过实际案例展示计算步骤与结果分析。

上次用简单地介绍了线性回归的模型和梯度下降获得参数方程的方法。

用到的一个十分简单的参数方程h(x)=theta0+theta1*x

 

在现实问题中,参数方程能要复杂许多,

不只有一个未知量x,可能有多个未知量x、y,不只有一次项,更有多次项,

 

 

因此,梯度下降的过程变化为:

(注意偏导的计算公式)

 

 

 

 

转载于:https://www.cnblogs.com/Ponys/p/3308268.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值