上次用简单地介绍了线性回归的模型和梯度下降获得参数方程的方法。
用到的一个十分简单的参数方程h(x)=theta0+theta1*x
在现实问题中,参数方程能要复杂许多,
不只有一个未知量x,可能有多个未知量x、y,不只有一次项,更有多次项,

因此,梯度下降的过程变化为:
(注意偏导的计算公式)

本文详细介绍了线性回归模型中参数方程的复杂化及其对应的梯度下降法优化过程,包括多变量、多项式等场景的应用,并通过实际案例展示计算步骤与结果分析。
上次用简单地介绍了线性回归的模型和梯度下降获得参数方程的方法。
用到的一个十分简单的参数方程h(x)=theta0+theta1*x
在现实问题中,参数方程能要复杂许多,
不只有一个未知量x,可能有多个未知量x、y,不只有一次项,更有多次项,

因此,梯度下降的过程变化为:
(注意偏导的计算公式)

转载于:https://www.cnblogs.com/Ponys/p/3308268.html

被折叠的 条评论
为什么被折叠?