/*---UVa 1218 - Perfect Service
---首先对状态进行划分:
---dp[u][0]:u是服务器,则u的子节点可以是也可以不是服务器
---dp[u][1]:u不是服务器,但u的父节点是服务器,则u的所有儿子节点都不是服务器
---dp[u][2]:u和u的父亲都不是服务器,则u的儿子恰好有一个是服务器
---状态转移方程:
---dp[u][0]=sum{min(dp[v][0],dp[v][1])}+1
---dp[u][1]=sum(dp[v][2]);
---对于状态dp[u][2],计算略微复杂,这个状态说明u的儿子节点中恰好有一个是服务器,于是需要枚举每一个儿子节点是服务器
---剩下儿子不是服务器的情况,考虑到d(u,1)=sum(dp[v][2]),所以每次枚举时,不必再累加子节点不是服务器的情况,因为这样
---会使得计算一个节点复杂度达到O(k^2),k是u的子节点个数,可以:dp[u][2]=min(dp[u][1]-dp[v][2]+dp[v][0]),枚举v即可
---在实现时,首先递归的构造有根树。然后可以采用记忆化搜索。
---初始化问题,若u是叶子节点,dp[u][0]=1,dp[u][1]=0,dp[u][2]=INF,服务器个数不会超过10000,所以为了保准累加结果不溢出
---可以将INF设置为10000.
*/
#define _CRT_SECURE_NO_DEPRECATE
#include<iostream>
#include<algorithm>
#include<string.h>
#include<vector>
using namespace std;
#define INF 10000+10;
const int maxn = 10000 + 10;
int d[maxn][3];
int parent[maxn];
vector<int>vec[maxn];
//构造有根树
void dfs(int u, int fa){
parent[u] = fa;
for (int i = 0; i < vec[u].size(); i++){
int v = vec[u][i];
if (v != fa) dfs(v, u);
}
}
int dp(int u, int k){
int&ans = d[u][k];
if (ans >= 0)return ans;
int n = vec[u].size();
if (k == 0)ans = 1;
else if (k == 1)ans = 0;
else ans = INF;
if (n == 1 && parent[u] == vec[u][0]){ //叶节点
return ans;
}
for (int i = 0; i < n; i++){
int v = vec[u][i];
if (v == parent[u])continue; //v是u的父节点,则跳过
if (k == 0)ans += min(dp(v, 0), dp(v, 1));
else if (k == 1) ans += dp(v, 2);
else ans = min(ans, dp(u, 1) - dp(v, 2) + dp(v, 0));
}
return ans;
}
int main(){
int n, i,u,v;
while (scanf("%d", &n)){
for (i = 0; i <= n; i++)vec[i].clear();
for (i = 1; i < n; i++){
scanf("%d%d", &u, &v);
u--, v--;
vec[u].push_back(v);
vec[v].push_back(u);
}
scanf("%d", &v);
dfs(0, -1);
vec[0].push_back(-1);
memset(d, -1, sizeof(d));
int ans = min(dp(0, 0), dp(0, 2));
printf("%d\n", ans);
if (v == -1)break;
}
return 0;
}