【动态规划】创意吃鱼法

本文介绍了一种算法,用于寻找给定矩阵中最大的完全由0组成的正方形区域。通过预处理得到横向和纵向连续0的数量,再利用动态规划求解最大正方形边长。算法分为两次遍历,分别从左上到右下和从右上到左下,确保所有可能的正方形都被考虑。
摘要由CSDN通过智能技术生成

原题传送门

思路


s1[i][j]表示(i,j)最多向左(或向右)延伸多少个格子,使这些格子中的数都是0(不包括(i,j));
s2[i][j]表示(i,j)最多向上(或向下)延伸多少个格子,使这些格子中的数都是0(不包括(i,j));
f[i][j]表以(i,j)为右下角(或左下角)的最大对角线长度。

状态转移方程:f[i][j]=min(f[i-1][j-1],min(s1[i][j-1],s2[i-1][j]))+1

Code


#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<string>
#include<map>
typedef long long ll;
using namespace std;
int n,m,ans;
int a[2509][2509],f[2509][2509],s1[2509][2509],s2[2509][2509];//s1为横向,s2为纵向 
int main()
{
    cin>>n>>m;
    //第一遍左上——右下 
    for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++)
    {
        scanf("%d",&a[i][j]);
        if(!a[i][j])
        {
            s1[i][j]=s1[i][j-1]+1;
            s2[i][j]=s2[i-1][j]+1;
        }
        if(a[i][j])
        f[i][j]=min(f[i-1][j-1],min(s1[i][j-1],s2[i-1][j]))+1;
        ans=max(ans,f[i][j]);
    }
    //第二遍右上——左下 
    memset(f,0,sizeof(f)); 
    memset(s1,0,sizeof(s1));//数组置0 
    memset(s2,0,sizeof(s2)); 
    for(int i=1;i<=n;i++)
    for(int j=m;j>=1;j--)
    {
        if(!a[i][j])
        {
            s1[i][j]=s1[i][j+1]+1;
            s2[i][j]=s2[i-1][j]+1;
        }
        if(a[i][j])
        f[i][j]=min(f[i-1][j+1],min(s1[i][j+1],s2[i-1][j]))+1;
        ans=max(ans,f[i][j]);
    }
    cout<<ans<<endl;
    return 0;
}

转载于:https://www.cnblogs.com/gongdakai/p/11215388.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值