利用费马小定理判断素数

今天听了ljss神犇的数论课,顿时感觉————我真的是太弱啦!

我只能稍微写一下我能听懂的部分orz

那么这就是今天我为数不多能听懂一点的之一......QAQ

首先先介绍今天的主角:费马小定理

————转自维基百科

没看懂的话我稍微解释一下,就是

假如p是质数,且GCD(a,p)=1,那么 a^(p-1) ≡1(mod p)(假如p是质数,且a,p互质,那么 a的(p-1)次方除以p的余数恒等于1)

因此我们就似乎有了基于费马小定理的判断素数方式:随机枚举使gcd(a,p)=1的a。判断该表达式是否成立--------记为命题q

但是仔细想一想,会发现命题q实际是费马小定理的逆命题

根据我们在高中数学选修2-1学习的内容,真命题的逆命题不一定是真命题....

似乎出现了一些问题呢x

所幸的是,这种思路大部分时间是正确的,因为根据某个奇怪的性质,费马小定理只有对于少数数才会出现逆命题不成立的情况,而这类数就被称为卡迈克尔数(Carmichael number)

卡迈克尔数在正整数中很少,并且随着数的增大会变的越来越少,在1e8范围内只有255个,1e17范围内也才只有不到6e5个,因此可以直接多次应用上述的算法来提高准确性

不过作为有追求的oier,我们怎么能这么没有梦想呢?

我们引入新工具:

  二次探测定理 如果p是一个素数,且0<x<p,则方程x^2≡1(mod p)的解必为 x=1或p-1。

下面给出简单的证明:

x^2≡1(mod p)

→x^2-1≡0(mod p)

→(x-1)(x+1)≡0(mod p)

那么我们将二次探测定理转换成

(a(p-1)/2)2≡1(mod p)

应用上面这两个定理可以使失误率达到最劣2-t,而实际远远达不到这个数,因此一般3~5次即可保证正确性

该算法就是Miller_Rabin算法,期望复杂度O(tlog3n)

代码:(还有些许唐突的地方,待补全)题目为洛谷线性筛模板

 

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<limits.h>
#include<ctime>
#define N 10000001
typedef long long ll;
const int inf=0x3fffffff;
const int maxn=2017;
using namespace std;
inline int read()
{
    int f=1,x=0;char ch=getchar();
    while(ch>'9'|ch<'0')
    {
        if(ch=='-')
        f=-1;
        ch=getchar();
    }
    while(ch<='9'&&ch>='0')
    {
        x=(x<<3)+(x<<1)+ch-'0';
        ch=getchar();
    }
    return f*x;
}
ll qmulti(ll a,ll b,ll c)
{
    ll tem=a,sum=0;
    while(b)
    {
        if(b&1)sum=(sum+tem)%c;
        tem=(tem+tem)%c;
        b>>=1;
    }
    return sum;
} //防止乘的时候过大爆掉
ll qpow(ll a,ll b,ll c)
{
	ll k=1;
	while(b>0)
	{
		if(b&1)k=(k*a)%c;
		a=(a*a)%c;
		b>>=1;
	}
	return k;
}
bool witness(int a,int x,int k,int q)
{
        ll v=qpow(a,q,x);
	if(v==1||v==x-1)return 0;
	while(k--)
	{
		v=v*v%x;
		if(v==x-1)return 0;
	}
	return 1;
}
bool miller(ll n)
{
	int time=5;//随机time次
	if(n==2)return 1;//特判2
	if(n<2||n%2==0)return 0;
	ll a=0,t=0,b=n-1;
	while(!(b&1))
	{
		t++;
		b>>=1;
	}
	for(int i=0;i<time;i++)
	{
		a=rand()%(n-1)+1;
		if(witness(a,n,t,b))return 0;
	}
	return 1;
} 
int main()
{
    srand(time(0));
    ll n=read(),m=read();
    for(ll i=1;i<=m;i++)
    {
        ll a=read();
        printf(miller(a)?"Yes\n":"No\n");
    }    
}

  

 

 

 

 a p − 1 ≡ 1 ( mod p ) {\displaystyle a^{p-1}\equiv 1{\pmod {p}}} a^{​{p-1}}\equiv 1{\pmod  {p}} a p − 1 ≡ 1 ( mod p ) {\displaystyle a^{p-1}\equiv 1{\pmod {p}}} a^{​{p-1}}\equiv 1{\pmod  {p}} a p − 1 ≡ 1 ( mod p ) {\displaystyle a^{p-1}\equiv 1{\pmod {p}}} a^{​{p-1}}\equiv 1{\pmod  {p}} a p − 1 ≡ 1 ( mod p ) {\displaystyle a^{p-1}\equiv 1{\pmod {p}}} a^{​{p-1}}\equiv 1{\pmod  {p}}[ a p − 1 ≡ 1 ( mod p ) {\displaystyle a^{p-1}\equiv 1{\pmod {p}}} a^{​{p-1}}\equiv 1{\pmod  {p}}[ a p − 1 ≡ 1 ( mod p ) {\displaystyle a^{p-1}\equiv 1{\pmod {p}}} a^{​{p-1}}\equiv 1{\pmod  {p}}[ a p − 1 ≡ 1 ( mod p ) {\displaystyle a^{p-1}\equiv 1{\pmod {p}}} a^{​{p-1}}\equiv 1{\pmod  {p}}[ a p − 1 ≡ 1 ( mod p ) {\displaystyle a^{p-1}\equiv 1{\pmod {p}}} a^{​{p-1}}\equiv 1{\pmod  {p}}[ a p − 1 ≡ 1 ( mod p ) {\displaystyle a^{p-1}\equiv 1{\pmod {p}}} a^{​{p-1}}\equiv 1{\pmod  {p}} a p − 1 ≡ 1 ( mod p ) {\displaystyle a^{p-1}\equiv 1{\pmod {p}}} a^{​{p-1}}\equiv 1{\pmod  {p}} a p − 1 ≡ 1 ( mod p ) {\displaystyle a^{p-1}\equiv 1{\pmod {p}}} a^{​{p-1}}\equiv 1{\pmod  {p}}

转载于:https://www.cnblogs.com/tsunderehome/p/7517658.html

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值