AcWing 超快速排序
Description
在这个问题中,您必须分析特定的排序算法----超快速排序。
该算法通过交换两个相邻的序列元素来处理n个不同整数的序列,直到序列按升序排序。
对于输入序列
9 1 0 5 4
,超快速排序生成输出0 1 4 5 9
。您的任务是确定超快速排序需要执行多少交换操作才能对给定的输入序列进行排序。
Input
输入包括一些测试用例。
每个测试用例的第一行输入整数n,代表该用例中输入序列的长度。
接下来n行每行输入一个整数ai,代表用例中输入序列的具体数据,第i行的数据代表序列中第i个数。当输入用例中包含的输入序列长度为0时,输入终止,该序列无需处理。
Output
- 对于每个需要处理的输入序列,输出一个整数op,代表对给定输入序列进行排序所需的最小交换操作数,每个整数占一行。
Sample Input
5 9 1 0 5 4 3 1 2 3 0
Sample Output
6
0
Data Size
- 0≤N<500000,
0≤ai≤999999999
题解:
- 交换相邻元素... ...这不就是冒泡排序的原理吗?
- 那么,交换次数就是逆序对个数啊。yy一下很容易理解。
- 我是用树状数组求逆序对。需要注意几点:
- 用树状数组一定要离散化... ...要不炸空间炸时间
- 如果有重复的数怎么办?没关系,有没有发现,更新的时候是+=1而不是=1
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 500005
#define lowbit(x) (x & (-x))
#define LL long long
using namespace std;
LL n, cnt, ans;
LL a[N], b[N], c[N];
LL read()
{
LL x = 0; char c = getchar();
while(c < '0' || c > '9') c = getchar();
while(c >= '0' && c <= '9') {x = x * 10 + c - '0'; c = getchar();}
return x;
}
LL ask(LL pos)
{
LL r = 0;
while(pos >= 1)
{
r += c[pos];
pos -= lowbit(pos);
}
return r;
}
void update(LL pos, LL val)
{
while(pos <= n)
{
c[pos] += val;
pos += lowbit(pos);
}
}
LL find(LL x) {
return lower_bound(b + 1, b + 1 + cnt, x) - b;
}
int main()
{
while(scanf("%lld", &n) == 1)
{
if(!n) break;
ans = cnt = 0;
memset(c, 0, sizeof(c));
for(LL i = 1; i <= n; i++) a[i] = read(), b[++cnt] = a[i];
sort(b + 1, b + 1 + cnt);
cnt = unique(b + 1, b + 1 + cnt) - b - 1;
for(LL i = 1; i <= n; i++)
{
LL t = find(a[i]);
update(t, 1);
ans += (i - ask(t));
}
printf("%lld\n", ans);
}
return 0;
}