liu_runda的题!
错过辽QAQ
T1虽然没用题解的损益法,但是用高精%还能过..
没想到敲完就过编译了,还以为要调一天呢
高精度的阴影没了~
T2的思路很巧妙
首先一个区间最多有一种颜色占一半以上,所以分别计算3种颜色的贡献
处理个+=1的前缀和,又转化成求逆序对
log过不去,发现右指针每右移一位,所查询的权值的变化量一定是1
那可以在左边也放个指针,抖一抖维护出贡献就行了
T3 二分套二分
之前就被一道wqs的二分题虐死了
到今发现以前根本没搞懂,重学wqs
核心就是根据题目性质,发现代价(斜率)随x单调(不严格)变化
所以可以根据x的需求变动代价(斜率)
同时还可以求出对应的f(x),二分到需要的x就完事了
稍难的在二分不到x怎么办(因为斜率不严格单调或精度不足以发现区别)
那么此时x那段是平的,也就是选不选贡献一样
那么可以强制都一样时一定要选(或不选),就使得 在切这一段斜率不变的函数时,你的答案总集中在边缘的某点。
假设让它集中在较小的x,就在每次$x<=lim$时更新$ans$,这样仍保证ans加回$lim*cost$仍是对的
让他集中在较大的x也一样。
二分套二分看起来玄学,其实把情况都考虑好了还是可以安安稳稳地一遍过编译&&样例&&100%的测试数据的~