软件破解入门(暴力破解CrackMe)

  所谓暴力破解,就是通过修改汇编代码进而控制程序的运行流程,达到不需注册码也能正常使用软件的目的。相对于解出算法进而编写注册机,暴破的技术含量是比较低的。但也正是因为一本05年的杂志上介绍“暴力破解”的文章,让我入了这个大坑。近来想重拾调试器,就先从最简单的CrackMe入手,熟练一下各工具方法。

      下载CrackMe3文件(我用的是看雪《加密与解密》中的CFF CrackMe #3 程序  http://pan.baidu.com/s/1dD9v9x3 )。

 

1.查看此程序是否加壳。加壳的话还得进行脱壳处理。将CrackMe拖到PEID上,显示用Delphi编写。无壳,甚好。

 

3.打开程序,看看注册码出现异常的时候有何提示。恩,输入错误的注册码,确认。显示了“Wrong Serial,try again!”。我们记下这一串字符,接下来用得到。



4.退出程序,打开OllyDbg,并载入此程序。(当年用的是W32Dasm,属于静态反汇编软件,支持WIN API,具有强大的串式参考功能。因此成为破解入门软件的最佳选择。这次用OllyDbg实施爆破,只是复习一下操作。爆破原理都是相同的)下图是OllyICE,是OllyDbg的汉化版。也一样好用。

载入程序后,出现如下界面:



title上面的“模块 — crackme3”标明了程序领空,我们当前是在crackme的代码内。

5.我们在反汇编窗口“右键——查找——所有参考文本字符串”:


然后会弹出一个文本字符串的对话框,继续“右键——查找文本”:


 然后会弹出对话框,输入前面记下来的那串“Wrong Serial,try again!”。其实为了方便,可以只输入“Wrong”这个字符串,毕竟程序里带“Wrong”的字符不会太多,如下图:

点击“确定”后,会高亮查找结果,此时在对应字符串处“右键——反汇编窗口中跟随”,会在反汇编窗口中跳到对应此串字符的汇编指令:

 



看到上图的指令,分析一下程序流程:输入ID和注册码后,call调用子函数来判断注册码是否正确(00440F51处,call 00403B2C处的子函数),如果不正确,一个jnz跳到00440F72,弹出“Wrong Serial ,try again!”,提醒说你丫注册码是错的。

为了验证我们的想法,我们在call的前面按F2下个断点,然后一步步跟进,看看call了个什么函数过来:


 然后F9让程序跑起来,输入假的ID “wwwwww” ,按下“注册”。此时程序自然要去call子函数来验证我们的注册码是否正确。可惜它还没走到call的那一步,就停在了我们设的断点上(可以看到信息窗口中的堆栈内容“wwwww”,不知会不会存在缓冲区溢出?XD):


然后按下几次F8单步步过,直到了00440F34 call指令,程序就要召唤子程序来检验注册码是否正确了!此时改为F7单步步入,跟踪到所call的函数(如图,此函数地址在00403B2C处):


跟进去之后,这就是用来验证注册码的程序(从 三个push压入堆栈 开始,到 三个pop弹出堆栈+retn 结束):



从代码中可以发现,程序将输入的注册码与内置的注册码用cmp指令做了比较。(cmp指令执行后,将对标志寄存器ZF产生影响。比如 CMP AX , BX ,当AX=BX时,ZF=1;AX!=BX时,ZF=0。)

也就是说,如果注册码与输入的字符串不相等,ZF=0。此时子程序返回,执行00440F39处的JNZ指令。因为输入的注册码不对,ZF=0,开始执行JNZ,跳转到00440F8C,弹出“Wrong Serial”对话框提示注册码错误。

这就是传说中的“关键跳”,如果将JNZ(ZF=0时就跳转)改为JE(ZF=1时就跳转),得到的结果就会正好相反,即错误的注册码反而会提示注册成功,对的注册码反而会提示错误。

6.那么现在找出那两个“关键跳”(输入ID时call了一下,然后一个jnz。输入注册码时又call了一下,再一个jnz。),如下图:



好,现在只剩下修改汇编代码了。双击对应的JNZ指令,弹出“汇编于此处”的对话框。将只需将“jnz”改为“je”,点击“汇编”即可。用同样的方法修改另一处“jnz”:




修改完毕,“右键——复制到可执行文件——所有修改“:


在弹出的对话框中点击“全部复制”:

然后在出现的新对话框中“右键——保存文件”,完毕。

此时打开新保存的文件,随意输入一个ID和注册码,点击“注册”,即弹出“注册成功”的对话框:



小结:本次主要是重温了OllyDbg的操作。爆破无外乎就是改变程序的验证流程,譬如将关键处的jne改为je,或者jmp,比较不优雅。更优雅的是揣摩出程序作者的验证算法,写出内存补丁或者注册机,这才是高大上的方法。无奈算法一类的是我的软肋,仍需努力啊。

转载于:https://www.cnblogs.com/codex/p/4051817.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值