NOIP2014 解方程 秦九韶算法+多项式处理

题目描述

已知多项式方程:

\(a_0+a_1*x_1+a_2*x_2+⋯+a_n*x_n=0\)

求这个方程在 $[1,m] $内的整数解(nm 均为正整数)。


解:这道题真的是好 ~~~

首先观察式子 这不就是一个秦九韶算法吗

顺便复习一下秦九韶算法

就是对于高次方程由内到外递归求解 每次乘以x 时间复杂度O(n)

bool qsj(ll v,ll *y)
{
    ll v2=y[n];
    
    for(ll i=n-1;i>=1;i--)
    {
        v2=(v2*v%mod+y[i])%mod;
    }
    return ((v2==0)?true:false);
}

但是你会发现a很大存不下 这时候你就需要 取模

若f(x)==0 f(x)%p==0; mod p 意义下

但是 当$ f(x)==k*p$的时候 加一波秦九韶算法验证 此方法可能会冲突 所以你需要 %一个较大质数比如$1e9+7 $

或者多试几个\(p\)

然后加上一波快读

时间复杂度$O(m*n) $老板把我卡了


然后注意到

对于\(a_0+a_1*x+a_2*x_2...+a_n*x_n=0\)

\(%x\) 后 对于$ x$ 我们有 \(a_0\)%\(x ==0\)
这时候满足方程

所以\(x\)\(a_0\) 的约数 你可以这样暴力 但是也会超时


这个时候你就需要再次注意到

其实\(m\)过于大 我们考虑减小\(m\)

怎么减小呢??

其实很简单

对于一个多项式 我们you

\(f(x)\)%\(p==f(x\)%\(p)\)%\(p==\)\(f(x+p)\) %\(p\)

所以 对于一个 不能 作为答案的\(x\) 那么\(x+p x+2*p ...\)%p意义下 都不能作为答案

所以你可以类似用一种筛法

然后为了避免冲突 你可以 设几个参数

最后还有一波很重要的快读


Code:

#include<iostream>
#include<stdio.h>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
using namespace std;
#define ll long long
#define maxnn 2000000
#define mod 1000000007
#define mod1  191089
#define mod2 195997
#define mod3 186019
#define mod4 21410
#define mod5 10211
#define mod6 15193
#define mod8 26297
#define mod9 15331
#define mod7 19087
ll a[maxnn],b[maxnn],c[maxnn];
ll f1[maxnn],f2[maxnn],f3[maxnn];
ll n,m;
ll is[maxnn];
#include<queue>
string s;

#define ll long long

void rd(ll &a,ll &b,ll  &c){
    char ch=getchar();
    int  f=0;
    for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=1;
    a=b=c=ch^48;
    for(ch=getchar();ch>='0'&&ch<='9';ch=getchar()){
        a=((a<<3)+(a<<1)+(ch^48))%mod1;
        b=((b<<3)+(b<<1)+(ch^48))%mod2;
        c=((c<<3)+(c<<1)+(ch^48))%mod3;
    }
    if(f){a=-a;b=-b;c=-c;}
}
int tot=0;
deque<int > Q;

bool qsj1(ll v,ll *y)
{
    ll v2=y[n];
    
    for(ll i=n-1;i>=1;i--)
    {
        v2=(v2*v%mod1+y[i])%mod1;
    }
    return ((v2==0)?true:false);
}
bool qsj2(ll v,ll *y)
{
    ll v2=y[n];
    
    for(ll i=n-1;i>=1;i--)
    {
        v2=(v2*v%mod2+y[i])%mod2;
    }
    return ((v2==0)?true:false);
}
bool qsj3(ll v,ll *y)
{
    ll v2=y[n];
    
    for(ll i=n-1;i>=1;i--)
    {
        v2=(v2*v%mod3+y[i])%mod3;
    }
    return ((v2==0)?true:false);
}
void init()
{
    for(ll i=1;i<=mod1;i++)
    {
        if((!f1[i])&&(qsj1(i,a)))
        {
            for(ll j=i;j<=m;j+=mod1)
            {
                f1[j]=1;
            }
        }
    }
    for(ll i=1;i<=mod2;i++)
    {
        if((!f2[i])&&(qsj2(i,b)))
        {
            for(ll j=i;j<=m;j+=mod2)
            {
                f2[j]=1;
            }
        }
    }
    for(ll i=1;i<=mod3;i++)
    {
        if((!f3[i])&&(qsj3(i,c)))
        {
            for(ll j=i;j<=m;j+=mod3)
            {
                f3[j]=1;
            }
        }
    }
    
    //    for(ll i=1;i<=mod4;i++)
    //    {
    //        if((!is[i])&&(!qsj(i)))
    //        {
    //            for(ll j=i;j<=m;j+=mod4)
    //            {
    //                is[j]=1;
    //            }
    //        }
    //    }
    //
    //    for(ll i=1;i<=mod5;i++)
    //    {
    //        if((!is[i])&&(!qsj(i)))
    //        {
    //            for(ll j=i;j<=m;j+=mod5)
    //            {
    //                is[j]=1;
    //            }
    //        }
    //    }
    //
    //    for(ll i=1;i<=mod6;i++)
    //    {
    //        if((!is[i])&&(!qsj(i)))
    //        {
    //            for(ll j=i;j<=m;j+=mod6)
    //            {
    //                is[j]=1;
    //            }
    //        }
    //    }
    //
    //    for(ll i=1;i<=mod7;i++)
    //    {
    //        if((!is[i])&&(!qsj(i)))
    //        {
    //            for(ll j=i;j<=m;j+=mod7)
    //            {
    //                is[j]=1;
    //            }
    //        }
    //    }
    //
    //    for(ll i=1;i<=mod8;i++)
    //    {
    //        if((!is[i])&&(!qsj(i)))
    //        {
    //            for(ll j=i;j<=m;j+=mod8)
    //            {
    //                is[j]=1;
    //            }
    //        }
    //    }
    //
    //    for(ll i=1;i<=mod9;i++)
    //    {
    //        if((!is[i])&&(!qsj(i)))
    //        {
    //            for(ll j=i;j<=m;j+=mod9)
    //            {
    //                is[j]=1;
    //            }
    //        }
    //    }
}
int main()
{
    cin>>n>>m;
    n++;
    for(int i=1;i<=n;i++)
    {
        rd(a[i],b[i],c[i]);
    }
    init();
    for(int i=1;i<=m;i++)
    {
        if((f1[i]&&f2[i]&&f3[i]))
        {
            {
                tot++;
                Q.push_back(i);
            }
        }
    }
    cout<<tot<<endl;
    while(Q.size())
    {
        printf("%d\n",Q.front());
        Q.pop_front();
    }
}

转载于:https://www.cnblogs.com/OIEREDSION/p/11509667.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值