图的广度优先算法是图的基本算法,也是最小生成树以及单源最短路径算法的基础。最近把广度优先遍历算法实现了一下,希望能够有比以前更深的体会或者加强一下对该算法的理解。前些天看了优米网上关于于丹做客在路上的一段视频,有一点心得体会。我很赞同于丹的观点,一个人的见识是十分重要的,所谓见识,从某一方面来理解,那就是要亲历亲为。对于算法这一门数学与编程并重的学科更是如此。
任何一种算法,都需要搞清楚该算法的上下文环境,你需要问自己一些问题,这个算法叫什么名字,解决的是那一类问题,这些问题的重要定义或者条件是什么。其实没有什么万能的方法,但是确实存在能够解决一些特定条件集下的特定问题的算法。这里的广度优先遍历算法针对的图是无向连通图,一是无向,二是连通。给你一个无向连通图,再给你一个起始节点,要你做一个广度优先遍历,如何做?
/** * 这里使用邻接矩阵表示一个无向连通图。 */ #include <iostream> #include <queue> using namespace std; #define LEN 10 #define INFINITE 100 #define NIL -1 bool m[LEN][LEN]; enum COLOR {WHITE, GRAY, BLACK}; COLOR color[LEN]; int d[LEN]; int p[LEN]; //广度优先遍历算法, 借助一个队列+着色标记实现 void BFS(int s){ int i; for(i=0;i<LEN;++i){ color[i] = WHITE; d[i] = INFINITE; p[i] = NIL; } color[s] = GRAY; d[s] = 0; p[s] = NIL; queue<int> Q; Q.push(s); while(!Q.empty()){ int u = Q.front(); cout<<u<<endl; Q.pop(); //Access all vertices next to u int j; for(j=0;j<LEN;++j){ if(m[u][j] == true){ if(color[j] == WHITE){ color[j] = GRAY; d[j] = d[u] + 1; p[j] = u; Q.push(j); } } } color[u] = BLACK; } } int main(){ int i,j; for(i=0;i<LEN;++i){ for(j=0;j<LEN;++j){ m[i][j] = false; } } m[0][2] = true; m[2][0] = true; m[1][7] = true; m[7][1] = true; m[2][7] = true; m[7][2] = true; m[2][4] = true; m[4][2] = true; m[7][3] = true; m[3][7] = true; m[3][4] = true; m[4][3] = true; m[4][5] = true; m[5][4] = true; m[5][8] = true; m[8][5] = true; m[8][6] = true; m[6][8] = true; m[8][9] = true; m[9][8] = true; BFS(0); return 0; }
上面的程序是对如下的无向连通图进行的广度优先遍历:
编译运行后得到的输出结果为: