[HDU5807] [BestCoder Round #86 1004] Keep In Touch (DP)

[HDU5807] [BestCoder Round #86 1004] Keep In Touch (DP)

题面

有三个人从一张N个点无重边的有向无环图上的三个点出发,每单位时间,他们分别选择当前点的一条出边走下去。有向无环图点有点权,任意时刻他们所在的三个点两两点权相差不超过K。他们可以在任意三个点同时结束。求合法的路径总数。N≤50。

分析

暴力的做法,设\(dp[i][j][k]\)表示第一个人在i,第二个人在j,第三个人在k的方案数,然后枚举三个人接着到的地方x,y,z,倒推\(dp[i][j][k]=\sum dp[x][y][z]\)。这样的时间复杂度是\(O(n^6)\)

注意到我们没必要每次让三个人一起走,只要分三次走就可以了。给dp再加一维,\(dp[i][j][k][0/1/2]\)分别表示轮到第1个人走(初始状态),第2个人走,第3个人走。然后由2转移到0,0转移到1,1转移到2即可。这样的时间复杂度是\(O(n^4)\)

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#define maxn 50
#define mod 998244353 
using namespace std;
int t,n,lim,m,q;
int w[maxn+5];
int g[maxn+5][maxn+5];
int dp[maxn+5][maxn+5][maxn+5][3];
void ini(){
    memset(g,0,sizeof(g));
    memset(dp,0,sizeof(dp));
}
int main(){
    int u,v,a,b,c;
    scanf("%d",&t);
    for(int cas=1;cas<=t;cas++){
        ini();
        scanf("%d %d %d %d",&n,&m,&lim,&q);
        for(int i=1;i<=n;i++) scanf("%d",&w[i]); 
        for(int i=1;i<=m;i++){
            scanf("%d %d",&u,&v);
            g[u][v]=1;
        }
        for(int i=n;i>=1;i--){//题目要求u<v,所以倒推 
            for(int j=n;j>=1;j--){
                for(int k=n;k>=1;k--){
                    dp[i][j][k][0]=1;
                    dp[i][j][k][1]=0;
                    dp[i][j][k][2]=0;
                    for(int u=i+1;u<=n;u++){
                        if(g[i][u]){
                            dp[i][j][k][0]+=dp[u][j][k][2];
                            dp[i][j][k][0]%=mod;
                        }
                    }
                    for(int u=j+1;u<=n;u++){
                        if(g[j][u]){
                            dp[i][j][k][1]+=dp[i][u][k][0];
                            dp[i][j][k][1]%=mod;
                        }
                    }
                    for(int u=k+1;u<=n;u++){
                        if(g[k][u]){
                            dp[i][j][k][2]+=dp[i][j][u][1];
                            dp[i][j][k][2]%=mod;
                        }
                    }
                    if(max(max(abs(w[i]-w[j]),abs(w[i]-w[k])),abs(w[j]-w[k]))>lim) dp[i][j][k][0]=0;
                } 
            } 
        }
        for(int i=1;i<=q;i++){
            scanf("%d %d %d",&a,&b,&c);
            printf("%d\n",dp[a][b][c][0]);
        }
    } 
}

转载于:https://www.cnblogs.com/birchtree/p/11244032.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值