二分类问题常用评价指标

TP---将正类预测为正类
FN---将正类预测为负类
FP---将负类预测为正类
TN---将负类预测为负类

准确率(accuracy)

在测试集上,分类器正确分类的样本数与总样本数之比

精确率(precision)

\(P=\frac{TP}{TP+FP}\)

召回率(recall)

\(R=\frac{TP}{TP+FN}\)

F1值

\(F_1=\frac{2TP}{2TP+FP+FN}\)

转载于:https://www.cnblogs.com/vito_wang/p/10687805.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值