小米 OJ 编程比赛 02 月常规赛 3 Logic Gatekeeper CDQ分治

link:https://code.mi.com/problem/list/view?id=139

题意:

  有一个1e6 * 1e6 大的格子,现在有两种操作:1,给一个子矩阵中的每个格子加上k。2,计算一个子矩阵中格子数字的和,在mod意义下除以子矩阵的大小。

思路:

  首先要学一下( http://www.cnblogs.com/RabbitHu/p/BIT.html )中关于二位矩阵区间修改,求区间和的知识,然后由于这个格子太大,我们就要用cdq分治降维。

#include <algorithm>
#include  <iterator>
#include  <iostream>
#include   <cstring>
#include   <cstdlib>
#include   <iomanip>
#include    <bitset>
#include    <cctype>
#include    <cstdio>
#include    <string>
#include    <vector>
#include     <stack>
#include     <cmath>
#include     <queue>
#include      <list>
#include       <map>
#include       <set>
#include   <cassert>
//#include <unordered_map>
/*

⊂_ヽ
  \\ Λ_Λ  来了老弟
   \('ㅅ')
    > ⌒ヽ
   /   へ\
   /  / \\
   レ ノ   ヽ_つ
  / /
  / /|
 ( (ヽ
 | |、\
 | 丿 \ ⌒)
 | |  ) /
'ノ )  Lノ

*/

using namespace std;
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue



typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
//typedef __int128 bll;
typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3;

//priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n'

#define boost ios::sync_with_stdio(false);cin.tie(0)
#define rep(a, b, c) for(int a = (b); a <= (c); ++ a)
#define max3(a,b,c) max(max(a,b), c);
#define min3(a,b,c) min(min(a,b), c);


const ll oo = 1ll<<17;
const ll mos = 0x7FFFFFFF;  //2147483647
const ll nmos = 0x80000000;  //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //18
const int mod = 998244353;
const double esp = 1e-8;
const double PI=acos(-1.0);
const double PHI=0.61803399;    //黄金分割点
const double tPHI=0.38196601;


template<typename T>
inline T read(T&x){
    x=0;int f=0;char ch=getchar();
    while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar();
    while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x=f?-x:x;
}

inline void cmax(int &x,int y){if(x<y)x=y;}
inline void cmax(ll &x,ll y){if(x<y)x=y;}
inline void cmin(int &x,int y){if(x>y)x=y;}
inline void cmin(ll &x,ll y){if(x>y)x=y;}
#define MODmul(a, b) ((a*b >= mod) ? ((a*b)%mod + 2*mod) : (a*b))
#define MODadd(a, b) ((a+b >= mod) ? ((a+b)%mod + 2*mod) : (a+b))

/*-----------------------showtime----------------------*/
            const int maxn = 1e6+9;
            struct node{
                int op,x,y;
                ll val;
            }a[maxn << 2],tmp[maxn<<2];

            int lowbit(int x){
                return x & (-x);
            }

            struct bit{
                ll sum[maxn];

                void add(ll x,ll c){
                    while(x < maxn){
                        sum[x] = ((sum[x] + c)%mod + mod)%mod;
                        x += lowbit(x);
                    }
                }
                ll getsum(int x){
                    ll res = 0;
                    while(x > 0) {
                        res = ((res + sum[x])% mod + mod)%mod;
                        x -= lowbit(x);
                    }
                    return res;
                }
            }A,B,C,D;

            queue<int>que;
            ll ans[maxn],sz[maxn];

            void update(int x,int y,ll val){
                A.add(y, (val%mod + mod )%mod);
                B.add(y, (val*x%mod + mod )% mod);
                C.add(y, (val*y%mod + mod) % mod);
                D.add(y, (val*x%mod*y%mod+mod)%mod);
            }

            ll solve(int x, int y){
                ll res = 0;
                res = (res + 1ll*(x+1) * (y+1) % mod * A.getsum(y)%mod )%mod;
                res = (res - 1ll*(y+1) * B.getsum(y))%mod;
                res = (res - 1ll*(x+1) * C.getsum(y))%mod;
                res = (res +  D.getsum(y))%mod;
                res = (res + mod)%mod;
                return res;
            }
            void cdq(int le,int ri){
                if(le >= ri) return;
                int mid = (le + ri) >> 1;
                cdq(le, mid); cdq(mid+1, ri);

                int p = le,q = mid+1;
                int tot = 0;
                while(p <= mid && q <= ri) {
                    if(a[p].x <= a[q].x){
                        if(a[p].op == 1) {
                            update(a[p].x, a[p].y,a[p].val);
                            que.push(p);
                        }
                        tmp[++tot] = a[p++];
                    }
                    else {
                        if(a[q].op == 2) {
                            ans[a[q].val] = (ans[a[q].val] + solve(a[q].x, a[q].y) ) % mod;
                        }
                        else if(a[q].op == 3) {
                            ans[a[q].val] = ((ans[a[q].val] - solve(a[q].x, a[q].y) ) ) % mod;
                            if(ans[a[q].val]< 0) ans[a[q].val] = (ans[a[q].val]+mod)%mod;
                        }
                        tmp[++tot] = a[q++];
                    }
                }

                while(p <= mid) tmp[++tot] = a[p++];
                while(q <= ri){
                        if(a[q].op == 2) {
                            ans[a[q].val] = (ans[a[q].val] + solve(a[q].x, a[q].y) ) % mod;
                        }
                        else if(a[q].op == 3) {
                            ans[a[q].val] = ((ans[a[q].val] - solve(a[q].x, a[q].y) ) ) % mod;
                            if(ans[a[q].val]< 0) ans[a[q].val] = (ans[a[q].val]+mod)%mod;
                        }
                        tmp[++tot] = a[q++];
                }
                while(!que.empty()) {
                    int p = que.front(); que.pop();
                    update(a[p].x, a[p].y,-1ll*a[p].val);
                }
                rep(i, 1, tot) a[i+le-1] = tmp[i];
            }
            ll ksm(ll a, ll n){
                ll res = 1;
                while(n > 0){
                    if(n & 1) res = res * a % mod;
                    a = a * a % mod;
                    n>>=1;
                }
                return res;
            }
int main(){
            int n,m,q;
            scanf("%d%d%d", &n, &m, &q);
            int tot = 0,id = 0;
            while(q--) {
                int op; scanf("%d", &op);
                if(op == 1) {
                    int x1,y1,x2,y2,k;
                    scanf("%d%d%d%d%d", &x1, &y1, &x2, &y2, &k);
                    tot++;  a[tot].x = x1; a[tot].y = y1; a[tot].val = k;a[tot].op = 1;
                    tot++;  a[tot].x = x1; a[tot].y = y2+1; a[tot].val = -k;a[tot].op = 1;
                    tot++;  a[tot].x = x2+1; a[tot].y = y1; a[tot].val = -k;a[tot].op = 1;
                    tot++;  a[tot].x = x2+1; a[tot].y = y2+1; a[tot].val = k;a[tot].op = 1;
                }
                else {
                    int x1,y1,x2,y2;
                    id++;
                    scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
                    tot++;  a[tot].x = x1-1; a[tot].y = y1-1;   a[tot].val = id; a[tot].op = 2;
                    tot++;  a[tot].x = x1-1; a[tot].y = y2; a[tot].val = id; a[tot].op = 3;
                    tot++;  a[tot].x = x2; a[tot].y = y1-1; a[tot].val = id; a[tot].op = 3;
                    tot++;  a[tot].x = x2; a[tot].y = y2; a[tot].val = id;a[tot].op = 2;
                    sz[id] = 1ll*(y2-y1+1)*(x2-x1+1)%mod;
                }
            }

            cdq(1, tot);

            rep(i, 1, id) {
                printf("%lld\n", 1ll*ans[i] * ksm(sz[i], mod-2)%mod);
            }
            return 0;
}
View Code

 

转载于:https://www.cnblogs.com/ckxkexing/p/10462791.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值