lrj计算几何模板

整理了一下大白书上的计算几何模板。

  1 #include <cstdio>
  2 #include <algorithm>
  3 #include <cmath>
  4 #include <vector>
  5 using namespace std;
  6 //lrj计算几何模板
  7 struct Point
  8 {
  9     double x, y;
 10     Point(double x=0, double y=0) :x(x),y(y) {}
 11 };
 12 typedef Point Vector;
 13 
 14 Point read_point(void)
 15 {
 16     double x, y;
 17     scanf("%lf%lf", &x, &y);
 18     return Point(x, y);
 19 }
 20 
 21 const double EPS = 1e-10;
 22 
 23 //向量+向量=向量 点+向量=点
 24 Vector operator + (Vector A, Vector B)    { return Vector(A.x + B.x, A.y + B.y); }
 25 
 26 //向量-向量=向量 点-点=向量
 27 Vector operator - (Vector A, Vector B)    { return Vector(A.x - B.x, A.y - B.y); }
 28 
 29 //向量*数=向量
 30 Vector operator * (Vector A, double p)    { return Vector(A.x*p, A.y*p); }
 31 
 32 //向量/数=向量
 33 Vector operator / (Vector A, double p)    { return Vector(A.x/p, A.y/p); }
 34 
 35 bool operator < (const Point& a, const Point& b)
 36 { return a.x < b.x || (a.x == b.x && a.y < b.y); }
 37 
 38 int dcmp(double x)
 39 { if(fabs(x) < EPS) return 0; else return x < 0 ? -1 : 1; }
 40 
 41 bool operator == (const Point& a, const Point& b)
 42 { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; }
 43 
 44 /**********************基本运算**********************/
 45 
 46 //点积
 47 double Dot(Vector A, Vector B)
 48 { return A.x*B.x + A.y*B.y; }
 49 //向量的模
 50 double Length(Vector A)    { return sqrt(Dot(A, A)); }
 51 
 52 //向量的夹角,返回值为弧度
 53 double Angle(Vector A, Vector B)
 54 { return acos(Dot(A, B) / Length(A) / Length(B)); }
 55 
 56 //叉积
 57 double Cross(Vector A, Vector B)
 58 { return A.x*B.y - A.y*B.x; }
 59 
 60 //向量AB叉乘AC的有向面积
 61 double Area2(Point A, Point B, Point C)
 62 { return Cross(B-A, C-A); }
 63 
 64 //向量A旋转rad弧度
 65 Vector VRotate(Vector A, double rad)
 66 {
 67     return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad));
 68 }
 69 
 70 //将B点绕A点旋转rad弧度
 71 Point PRotate(Point A, Point B, double rad)
 72 {
 73     return A + VRotate(B-A, rad);
 74 }
 75 
 76 //求向量A向左旋转90°的单位法向量,调用前确保A不是零向量
 77 Vector Normal(Vector A)
 78 {
 79     double l = Length(A);
 80     return Vector(-A.y/l, A.x/l);
 81 }
 82 
 83 /**********************点和直线**********************/
 84 
 85 //求直线P + tv 和 Q + tw的交点,调用前要确保两条直线有唯一交点
 86 Point GetLineIntersection(Point P, Vector v, Point Q, Vector w)
 87 {
 88     Vector u = P - Q;
 89     double t = Cross(w, u) / Cross(v, w);
 90     return P + v*t;
 91 }//在精度要求极高的情况下,可以自定义分数类
 92 
 93 //P点到直线AB的距离
 94 double DistanceToLine(Point P, Point A, Point B)
 95 {
 96     Vector v1 = B - A, v2 = P - A;
 97     return fabs(Cross(v1, v2)) / Length(v1);    //不加绝对值是有向距离
 98 }
 99 
100 //点到线段的距离
101 double DistanceToSegment(Point P, Point A, Point B)
102 {
103     if(A == B)    return Length(P - A);
104     Vector v1 = B - A, v2 = P - A, v3 = P - B;
105     if(dcmp(Dot(v1, v2)) < 0)    return Length(v2);
106     else if(dcmp(Dot(v1, v3)) > 0)    return Length(v3);
107     else return fabs(Cross(v1, v2)) / Length(v1);
108 }
109 
110 //点在直线上的射影
111 Point GetLineProjection(Point P, Point A, Point B)
112 {
113     Vector v = B - A;
114     return A + v * (Dot(v, P - A) / Dot(v, v));
115 }
116 
117 //线段“规范”相交判定
118 bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2)
119 {
120     double c1 = Cross(a2-a1, b1-a1), c2 = Cross(a2-a1, b2-a1);
121     double c3 = Cross(b2-b1, a1-b1), c4 = Cross(b2-b1, a2-b1);
122     return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0;
123 }
124 
125 //判断点是否在线段上
126 bool OnSegment(Point P, Point a1, Point a2)
127 {
128     Vector v1 = a1 - P, v2 = a2 - P;
129     return dcmp(Cross(v1, v2)) == 0 && dcmp(Dot(v1, v2)) < 0;
130 }
131 
132 //求多边形面积
133 double PolygonArea(Point* P, int n)
134 {
135     double ans = 0.0;
136     for(int i = 1; i < n - 1; ++i)
137         ans += Cross(P[i]-P[0], P[i+1]-P[0]);
138     return ans/2;
139 }
140 
141 int main(void)
142 {
143     Vector a[2];
144     sort(a, a + 2);
145     return 0;
146 }
147 
148 /**********************圆的相关计算**********************/
149 
150 const double PI = acos(-1.0);
151 struct Line
152 {//有向直线
153     Point p;
154     Vector v;
155     double ang;
156     Line()    { }
157     Line(Point p, Vector v): p(p), v(v)    { ang = atan2(v.y, v.x); }
158     Point point(double t)
159     {
160         return p + v*t;
161     }
162     bool operator < (const Line& L) const
163     {
164         return ang < L.ang;
165     }
166 };
167 
168 struct Circle
169 {
170     Point c;    //圆心
171     double r;    //半径
172     Circle(Point c, double r):c(c), r(r)    {}
173     Point point(double a)
174     {//求对应圆心角的点
175         return Point(c.x + r*cos(a), c.y + r*sin(a));
176     }
177 };
178 
179 //两圆相交并返回交点个数 
180 int getLineCircleIntersection(Line L, Circle C, double& t1, double& t2, vector<Point>& sol)
181 {
182     double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y;
183     double e = a*a + c*c, f = 2*(a*b + c*d), g = b*b + d*d - C.r*C.r;
184     double delta = f*f - 4*e*g;        //判别式
185     if(dcmp(delta) < 0)    return 0;    //相离
186     if(dcmp(delta) == 0)            //相切
187     {
188         t1 = t2 = -f / (2 * e);
189         sol.push_back(L.point(t1));
190         return 1;
191     }
192     //相交
193     t1 = (-f - sqrt(delta)) / (2 * e);    sol.push_back(L.point(t1));
194     t2 = (-f + sqrt(delta)) / (2 * e);    sol.push_back(L.point(t2));
195     return 2;
196 }
197 
198 //计算向量极角
199 double angle(Vector v)    { return atan2(v.y, v.x); }
200 
201 int getCircleCircleIntersection(Circle C1, Circle C2, vector<Point>& sol)
202 {//圆与圆相交,并返回交点个数
203     double d = Length(C1.c - C2.c);
204     if(dcmp(d) == 0)
205     {
206         if(dcmp(C1.r - C2.r) == 0)    return -1;    //两圆重合
207         return 0;                                //没有交点
208     }
209     if(dcmp(C1.r + C2.r - d) > 0)    return 0;
210     if(dcmp(fabs(C1.r - C2.r) - d) > 0)    return 0;
211 
212     double a = angle(C2.c - C1.c);
213     double da = acos((C1.r*C1.r + d*d - C2.r*C2.r) / (2*C1.r*d));
214     Point p1 = C1.point(a+da), p2 = C1.point(a-da);
215     sol.push_back(p1);
216     if(p1 == p2)    return 1;
217     sol.push_back(p2);
218     return 2;
219 }
220 
221 //过定点作圆的切线并返回切线条数
222 int getTangents(Point p, Circle C, Vector* v)
223 {
224     Vector u = C.c - p;
225     double dist = Length(u);
226     if(dist < C.r)    return 0;
227     else if(dcmp(dist - C.r) == 0)
228     {
229         v[0] = VRotate(u, PI/2);
230         return 1;
231     }
232     else
233     {
234         double ang = asin(C.r / dist);
235         v[0] = VRotate(u, +ang);
236         v[1] = VRotate(u, -ang);
237         return 2;
238     }
239 }
240 
241 //求两个圆的公切线,并返回切线条数
242 //注意,这里的Circle和上面的定义的Circle不一样
243 int getTangents(Circle A, Circle B, Point* a, Point* b)
244 {
245     int cnt = 0;
246     if(A.r < B.r)    { swap(A, B); swap(a, b); }
247     double d2 = (A.x-B.x)*(A.x-B.x) + (A.y-B.y)*(A.y-B.y);
248     double rdiff = A.r - B.r;
249     double rsum = A.r + B.r;
250     if(d2 < rdiff*rdiff)    return 0;    //内含
251 
252     double base = atan2(B.y-A.y, B.x-A.x);
253     if(dcmp(d2) == 0 && dcmp(A.r - B.r) == 0)    return -1; //重合
254     if(dcmp(d2 - rdiff*rdiff) == 0)    //内切
255     {
256         a[cnt] = A.point(base); b[cnt] = B.point(base); cnt++;
257         return 1;
258     }
259 
260     //有外公切线
261     double ang = acos((A.r - B.r) / sqrt(d2));
262     a[cnt] = A.point(base + ang); b[cnt] = B.point(base + ang); cnt++;
263     a[cnt] = A.point(base - ang); b[cnt] = B.point(base - ang); cnt++;
264     if(dcmp(rsum*rsum - d2) == 0)
265     {//外切
266         a[cnt] = b[cnt] = A.point(base); cnt++;
267     }
268     else if(dcmp(d2 - rsum*rsum) > 0)
269     {
270         ang = acos((A.r + B.r) / sqrt(d2));
271         a[cnt] = A.point(base + ang); b[cnt] = B.point(PI + base + ang); cnt++;
272         a[cnt] = A.point(base - ang); b[cnt] = B.point(PI + base - ang); cnt++;
273     }
274     return cnt;
275 }
276 
277 //转角发判定点P是否在多边形内部
278 int isPointInPolygon(Point P, Point* Poly, int n)
279 {
280     int wn;
281     for(int i = 0; i < n; ++i)
282     {
283         if(OnSegment(P, Poly[i], Poly[(i+1)%n]))    return -1;    //在边界上
284         int k = dcmp(Cross(Poly[(i+1)%n] - Poly[i], P - Poly[i]));
285         int d1 = dcmp(Poly[i].y - P.y);
286         int d2 = dcmp(Poly[(i+1)%n].y - P.y);
287         if(k > 0 && d1 <= 0 && d2 > 0)    wn++;
288         if(k < 0 && d2 <= 0 && d1 > 0)    wn--;
289     }
290     if(wn != 0)    return 1;    //内部
291     return 0;                //外部
292 }
293 
294 //计算凸包,输入点数组P,个数为n,输出点数组ch。函数返回凸包顶点数。
295 //输入不能有重复点,函数执行后点的顺序会发生变化
296 //如果不希望凸包的边上有输入点,把两个 <= 改成 <
297 //在精度要求高时,可用dcmp比较
298 int ConvexHull(Point* p, int n, Point* ch)
299 {
300     sort(p, p +n);
301     int m = 0;
302     for(int i = 0; i < n; ++i)
303     {
304         while(m > 1 && Cross(ch[m-1] - ch[m-2], p[i] - ch[m-2]) <= 0)    m--;
305         ch[m++] = p[i];
306     }
307     int k = m;
308     for(int i = n-2; i >= 0; --i)
309     {
310         while(m > k && Cross(ch[m-1] - ch[m-2], p[i] - ch[m-2]) <= 0)    m--;
311         ch[m++] = p[i];
312     }
313     if(n > 1)    m--;
314     return m;
315 }

 

旋转卡壳的模板:

int diameter2(vector<Point>& points)
{
    vector<Point> p = ConvexHull(points);
    int n = p.size();
    //for(int i = 0; i < n; ++i)    printf("%d %d\n", p[i].x, p[i].y);
    if(n == 1)    return 0;
    if(n == 2)  return Dist2(p[0], p[1]);
    p.push_back(p[0]);
    int ans = 0;
    for(int u = 0, v = 1; u < n; ++u)
    {// 一条直线贴住边p[u]-p[u+1]
        while(true)
        {
            // 当Area(p[u], p[u+1], p[v+1]) <= Area(p[u], p[u+1], p[v])时停止旋转
            //因为两个三角形有一公共边,所以面积大的那个点到直线距离大 
            // 即Cross(p[u+1]-p[u], p[v+1]-p[u]) - Cross(p[u+1]-p[u], p[v]-p[u]) <= 0
            // 根据Cross(A,B) - Cross(A,C) = Cross(A,B-C)
            // 化简得Cross(p[u+1]-p[u], p[v+1]-p[v]) <= 0
            int diff = Cross(p[u+1]-p[u], p[v+1]-p[v]);
            if(diff <= 0)
            {
                ans = max(ans, Dist2(p[u], p[v]));
                if(diff == 0)    ans = max(ans, Dist2(p[u], p[v+1]));
                break;
            } 
            v = (v+1)%n;
        }
    }
    return ans;
}

 

转载于:https://www.cnblogs.com/AOQNRMGYXLMV/p/4022401.html

python023基于Python旅游景点推荐系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
JSP基于SSM网上医院预约挂号系统毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值