整理了一下大白书上的计算几何模板。
1 #include <cstdio> 2 #include <algorithm> 3 #include <cmath> 4 #include <vector> 5 using namespace std; 6 //lrj计算几何模板 7 struct Point 8 { 9 double x, y; 10 Point(double x=0, double y=0) :x(x),y(y) {} 11 }; 12 typedef Point Vector; 13 14 Point read_point(void) 15 { 16 double x, y; 17 scanf("%lf%lf", &x, &y); 18 return Point(x, y); 19 } 20 21 const double EPS = 1e-10; 22 23 //向量+向量=向量 点+向量=点 24 Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); } 25 26 //向量-向量=向量 点-点=向量 27 Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); } 28 29 //向量*数=向量 30 Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); } 31 32 //向量/数=向量 33 Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); } 34 35 bool operator < (const Point& a, const Point& b) 36 { return a.x < b.x || (a.x == b.x && a.y < b.y); } 37 38 int dcmp(double x) 39 { if(fabs(x) < EPS) return 0; else return x < 0 ? -1 : 1; } 40 41 bool operator == (const Point& a, const Point& b) 42 { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; } 43 44 /**********************基本运算**********************/ 45 46 //点积 47 double Dot(Vector A, Vector B) 48 { return A.x*B.x + A.y*B.y; } 49 //向量的模 50 double Length(Vector A) { return sqrt(Dot(A, A)); } 51 52 //向量的夹角,返回值为弧度 53 double Angle(Vector A, Vector B) 54 { return acos(Dot(A, B) / Length(A) / Length(B)); } 55 56 //叉积 57 double Cross(Vector A, Vector B) 58 { return A.x*B.y - A.y*B.x; } 59 60 //向量AB叉乘AC的有向面积 61 double Area2(Point A, Point B, Point C) 62 { return Cross(B-A, C-A); } 63 64 //向量A旋转rad弧度 65 Vector VRotate(Vector A, double rad) 66 { 67 return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad)); 68 } 69 70 //将B点绕A点旋转rad弧度 71 Point PRotate(Point A, Point B, double rad) 72 { 73 return A + VRotate(B-A, rad); 74 } 75 76 //求向量A向左旋转90°的单位法向量,调用前确保A不是零向量 77 Vector Normal(Vector A) 78 { 79 double l = Length(A); 80 return Vector(-A.y/l, A.x/l); 81 } 82 83 /**********************点和直线**********************/ 84 85 //求直线P + tv 和 Q + tw的交点,调用前要确保两条直线有唯一交点 86 Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) 87 { 88 Vector u = P - Q; 89 double t = Cross(w, u) / Cross(v, w); 90 return P + v*t; 91 }//在精度要求极高的情况下,可以自定义分数类 92 93 //P点到直线AB的距离 94 double DistanceToLine(Point P, Point A, Point B) 95 { 96 Vector v1 = B - A, v2 = P - A; 97 return fabs(Cross(v1, v2)) / Length(v1); //不加绝对值是有向距离 98 } 99 100 //点到线段的距离 101 double DistanceToSegment(Point P, Point A, Point B) 102 { 103 if(A == B) return Length(P - A); 104 Vector v1 = B - A, v2 = P - A, v3 = P - B; 105 if(dcmp(Dot(v1, v2)) < 0) return Length(v2); 106 else if(dcmp(Dot(v1, v3)) > 0) return Length(v3); 107 else return fabs(Cross(v1, v2)) / Length(v1); 108 } 109 110 //点在直线上的射影 111 Point GetLineProjection(Point P, Point A, Point B) 112 { 113 Vector v = B - A; 114 return A + v * (Dot(v, P - A) / Dot(v, v)); 115 } 116 117 //线段“规范”相交判定 118 bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) 119 { 120 double c1 = Cross(a2-a1, b1-a1), c2 = Cross(a2-a1, b2-a1); 121 double c3 = Cross(b2-b1, a1-b1), c4 = Cross(b2-b1, a2-b1); 122 return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0; 123 } 124 125 //判断点是否在线段上 126 bool OnSegment(Point P, Point a1, Point a2) 127 { 128 Vector v1 = a1 - P, v2 = a2 - P; 129 return dcmp(Cross(v1, v2)) == 0 && dcmp(Dot(v1, v2)) < 0; 130 } 131 132 //求多边形面积 133 double PolygonArea(Point* P, int n) 134 { 135 double ans = 0.0; 136 for(int i = 1; i < n - 1; ++i) 137 ans += Cross(P[i]-P[0], P[i+1]-P[0]); 138 return ans/2; 139 } 140 141 int main(void) 142 { 143 Vector a[2]; 144 sort(a, a + 2); 145 return 0; 146 } 147 148 /**********************圆的相关计算**********************/ 149 150 const double PI = acos(-1.0); 151 struct Line 152 {//有向直线 153 Point p; 154 Vector v; 155 double ang; 156 Line() { } 157 Line(Point p, Vector v): p(p), v(v) { ang = atan2(v.y, v.x); } 158 Point point(double t) 159 { 160 return p + v*t; 161 } 162 bool operator < (const Line& L) const 163 { 164 return ang < L.ang; 165 } 166 }; 167 168 struct Circle 169 { 170 Point c; //圆心 171 double r; //半径 172 Circle(Point c, double r):c(c), r(r) {} 173 Point point(double a) 174 {//求对应圆心角的点 175 return Point(c.x + r*cos(a), c.y + r*sin(a)); 176 } 177 }; 178 179 //两圆相交并返回交点个数 180 int getLineCircleIntersection(Line L, Circle C, double& t1, double& t2, vector<Point>& sol) 181 { 182 double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y; 183 double e = a*a + c*c, f = 2*(a*b + c*d), g = b*b + d*d - C.r*C.r; 184 double delta = f*f - 4*e*g; //判别式 185 if(dcmp(delta) < 0) return 0; //相离 186 if(dcmp(delta) == 0) //相切 187 { 188 t1 = t2 = -f / (2 * e); 189 sol.push_back(L.point(t1)); 190 return 1; 191 } 192 //相交 193 t1 = (-f - sqrt(delta)) / (2 * e); sol.push_back(L.point(t1)); 194 t2 = (-f + sqrt(delta)) / (2 * e); sol.push_back(L.point(t2)); 195 return 2; 196 } 197 198 //计算向量极角 199 double angle(Vector v) { return atan2(v.y, v.x); } 200 201 int getCircleCircleIntersection(Circle C1, Circle C2, vector<Point>& sol) 202 {//圆与圆相交,并返回交点个数 203 double d = Length(C1.c - C2.c); 204 if(dcmp(d) == 0) 205 { 206 if(dcmp(C1.r - C2.r) == 0) return -1; //两圆重合 207 return 0; //没有交点 208 } 209 if(dcmp(C1.r + C2.r - d) > 0) return 0; 210 if(dcmp(fabs(C1.r - C2.r) - d) > 0) return 0; 211 212 double a = angle(C2.c - C1.c); 213 double da = acos((C1.r*C1.r + d*d - C2.r*C2.r) / (2*C1.r*d)); 214 Point p1 = C1.point(a+da), p2 = C1.point(a-da); 215 sol.push_back(p1); 216 if(p1 == p2) return 1; 217 sol.push_back(p2); 218 return 2; 219 } 220 221 //过定点作圆的切线并返回切线条数 222 int getTangents(Point p, Circle C, Vector* v) 223 { 224 Vector u = C.c - p; 225 double dist = Length(u); 226 if(dist < C.r) return 0; 227 else if(dcmp(dist - C.r) == 0) 228 { 229 v[0] = VRotate(u, PI/2); 230 return 1; 231 } 232 else 233 { 234 double ang = asin(C.r / dist); 235 v[0] = VRotate(u, +ang); 236 v[1] = VRotate(u, -ang); 237 return 2; 238 } 239 } 240 241 //求两个圆的公切线,并返回切线条数 242 //注意,这里的Circle和上面的定义的Circle不一样 243 int getTangents(Circle A, Circle B, Point* a, Point* b) 244 { 245 int cnt = 0; 246 if(A.r < B.r) { swap(A, B); swap(a, b); } 247 double d2 = (A.x-B.x)*(A.x-B.x) + (A.y-B.y)*(A.y-B.y); 248 double rdiff = A.r - B.r; 249 double rsum = A.r + B.r; 250 if(d2 < rdiff*rdiff) return 0; //内含 251 252 double base = atan2(B.y-A.y, B.x-A.x); 253 if(dcmp(d2) == 0 && dcmp(A.r - B.r) == 0) return -1; //重合 254 if(dcmp(d2 - rdiff*rdiff) == 0) //内切 255 { 256 a[cnt] = A.point(base); b[cnt] = B.point(base); cnt++; 257 return 1; 258 } 259 260 //有外公切线 261 double ang = acos((A.r - B.r) / sqrt(d2)); 262 a[cnt] = A.point(base + ang); b[cnt] = B.point(base + ang); cnt++; 263 a[cnt] = A.point(base - ang); b[cnt] = B.point(base - ang); cnt++; 264 if(dcmp(rsum*rsum - d2) == 0) 265 {//外切 266 a[cnt] = b[cnt] = A.point(base); cnt++; 267 } 268 else if(dcmp(d2 - rsum*rsum) > 0) 269 { 270 ang = acos((A.r + B.r) / sqrt(d2)); 271 a[cnt] = A.point(base + ang); b[cnt] = B.point(PI + base + ang); cnt++; 272 a[cnt] = A.point(base - ang); b[cnt] = B.point(PI + base - ang); cnt++; 273 } 274 return cnt; 275 } 276 277 //转角发判定点P是否在多边形内部 278 int isPointInPolygon(Point P, Point* Poly, int n) 279 { 280 int wn; 281 for(int i = 0; i < n; ++i) 282 { 283 if(OnSegment(P, Poly[i], Poly[(i+1)%n])) return -1; //在边界上 284 int k = dcmp(Cross(Poly[(i+1)%n] - Poly[i], P - Poly[i])); 285 int d1 = dcmp(Poly[i].y - P.y); 286 int d2 = dcmp(Poly[(i+1)%n].y - P.y); 287 if(k > 0 && d1 <= 0 && d2 > 0) wn++; 288 if(k < 0 && d2 <= 0 && d1 > 0) wn--; 289 } 290 if(wn != 0) return 1; //内部 291 return 0; //外部 292 } 293 294 //计算凸包,输入点数组P,个数为n,输出点数组ch。函数返回凸包顶点数。 295 //输入不能有重复点,函数执行后点的顺序会发生变化 296 //如果不希望凸包的边上有输入点,把两个 <= 改成 < 297 //在精度要求高时,可用dcmp比较 298 int ConvexHull(Point* p, int n, Point* ch) 299 { 300 sort(p, p +n); 301 int m = 0; 302 for(int i = 0; i < n; ++i) 303 { 304 while(m > 1 && Cross(ch[m-1] - ch[m-2], p[i] - ch[m-2]) <= 0) m--; 305 ch[m++] = p[i]; 306 } 307 int k = m; 308 for(int i = n-2; i >= 0; --i) 309 { 310 while(m > k && Cross(ch[m-1] - ch[m-2], p[i] - ch[m-2]) <= 0) m--; 311 ch[m++] = p[i]; 312 } 313 if(n > 1) m--; 314 return m; 315 }
旋转卡壳的模板:
int diameter2(vector<Point>& points) { vector<Point> p = ConvexHull(points); int n = p.size(); //for(int i = 0; i < n; ++i) printf("%d %d\n", p[i].x, p[i].y); if(n == 1) return 0; if(n == 2) return Dist2(p[0], p[1]); p.push_back(p[0]); int ans = 0; for(int u = 0, v = 1; u < n; ++u) {// 一条直线贴住边p[u]-p[u+1] while(true) { // 当Area(p[u], p[u+1], p[v+1]) <= Area(p[u], p[u+1], p[v])时停止旋转 //因为两个三角形有一公共边,所以面积大的那个点到直线距离大 // 即Cross(p[u+1]-p[u], p[v+1]-p[u]) - Cross(p[u+1]-p[u], p[v]-p[u]) <= 0 // 根据Cross(A,B) - Cross(A,C) = Cross(A,B-C) // 化简得Cross(p[u+1]-p[u], p[v+1]-p[v]) <= 0 int diff = Cross(p[u+1]-p[u], p[v+1]-p[v]); if(diff <= 0) { ans = max(ans, Dist2(p[u], p[v])); if(diff == 0) ans = max(ans, Dist2(p[u], p[v+1])); break; } v = (v+1)%n; } } return ans; }